КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Расположение уровня Ферми в п/п
Fкв(W)—0,5 Fкв(W)--0 Fкв(W)--1 W>Wф W=Wф С точки зрения физической энергия Ферми – это наивысшая энергия частицы, которую она может принимать в некоторой системе при Т=0. С точки зрения статистики функция Fкв(W) – это вероятность замещения частицами состояния. Если энергия частицы меньше энергии Ферми, то вероятность будет равна 1. Вероятность замещения состояния с энергией, большей энергии уровня Ферми, равна 0. Уровень Ферми – энергетическое состояние частицы, вероятность замещения которого равна 0,5. Важной характеристикой энергетической системы является функция плотности энергетического состояния. Это закон изменения числа энергетических состояний за какой-то элементарный интервал времени в зависимости от расположения этого интервала на оси энергии. Для открытых и закрытых энергетических зон эта функция имеет вид: В собственном п/п уровень Ферми располагается посреди запрещенной зоны. Кривая распределения (Fкв(W)) всегда симметрична относительно уровня Ферми. Положение уровня Ферми и значение функции Fкв(W) зависит от концентрации носителей и от температуры. При Т=0 функция Ферми имеет ступенчатый характер. Вероятность занятия электронами уровней в зоне проводимости равна 0, а в валентной зоне эта же вероятность равна 1.
W ЗП Wс T>0 WФ WВ T=0
ВЗ 0 0,5 1 Fкв(W)
При Т>0 появляется небольшая вероятность занятия электронами уровней в зоне проводимости, а вероятности занятия уровней в валентной зоне соответственно уменьшается на такую же величину. Из формулы Ферми видно, что при температуре, большей 0, уровень Ферми – это такой уровень, формальная вероятность занятия которого электронами равна 0,5. Формальная потому, что уровень Ферми находится в запрещённой зоне и не может быть занят электронами. Реальный смысл имеют те участки, которые расположены в зоне проводимости и валентной зоне. Вышеприведённые процессы (при Т>0) возможны при симметричном размещении кривой Fкв(W), только тогда, когда уровень Ферми находится посередине запрещённой зоны.
Примесные п/п.
Резко повысить электропроводность п/п можно путём введения в него примесей. Добавлением 5-валентной примеси получается п/п с электронной проводимостью – n-типа. Добавлением 3-валентной примеси – п/п с дырочной проводимостью – p-типа. Предположим, в решётке кремния вместо атома кремния оказался 5-валентный атом фосфора с 5 электронами на внешней оболочке. 4 электрона образуют ковалентные связи, а 5-ый оказывается лишним. Этот пятый электрон под действием тепловой энергии легко отрывается от атома и становится свободным электроном, а атом фосфора становится неподвижным положительным ионом. В примесных п/п, как и в собственных, будут создаваться свободные электроны за счёт разрыва ковалентной связи. Но свободных электронов будет всегда больше, чем дырок. Полученный п/п имеет больше свободных электронов, чем дырок. Электрическая нейтральность кристалла не нарушается. П/п называются п/п n-типа, что означает, что основными носителями заряда являются электроны. 5-валентные атомы примесей называются донорами.
Если добавить к чистому п/п 3-валентную примесь, то получим п/п p-типа, называемый так потому, что в нём число дырок больше числа свободных электронов. Атом примеси имеет 3 электрона на внешней оболочке. Эти электроны образуют ковалентные связи с тремя соседними атомами кремния. Для образования четвёртой связи у него недостаёт одного электрона. Под действием тепловой энергии сюда может перейти валентный электрон с соседнего атома кремния. Энергия связи атома примеси с перешедшим электроном сильнее, чем энергия ковалентной связи. Поэтому в соседнем атоме п/п образуется дырка, а атом примеси становится неподвижным отрицательным ионом. Кристалл в целом остаётся нейтральным. Примеси, с помощью которых получается дырочная проводимость, называются акцепторными. Основные носители заряда – дырки, неосновные – электроны. Для большинства электрических приборов концентрация примесей находится в пределах 1015-1017 ат/см3, но для некоторых п/п приборов концентрация примесей может достигать 1021 ат/см3.
Рассмотрим энергетические диаграммы примесных п/п n: ЗП p: ЗП W с Wд Wс WФ Fкв(W) WФ WВ Fкв(W) WА ВЗ WВ ВЗ
На этих диаграммах показаны функции распределения и уровни Ферми. В n-п/п для того, чтобы пятый валентный электрон донорной примеси, не создавая ковалентных связей, смог оторваться от донора и стать свободным, ему необходимо сообщить дополнительную энергию около 0,01 эВ. С точки зрения зонной теории это означает, что данные электроны атома донора должны располагаться на энергетическом уровне Wд, расположенном в запрещённой зоне на 0,01 эВ ниже дна зоны проводимости. Наличие электронов на донорном уровне увеличивает вероятность перехода электронов в зону проводимости. Повышение этой вероятности на диаграмме отображено смещением функции Fкв(W). Т.к. Fкв(W) всегда симметрична относительно Wф , то и уровень Ферми смещается вверх. Уменьшение концентрации дырок объясняется тем, что при большом числе свободных электронов усиливаются процессы рекомбинации. В p-п/п появляется акцепторный уровень в запрещённой зоне вблизи потолка валентной зоны. Чтобы валентный электрон атома кремния разорвал ковалентную связь и смог перейти на орбиту ковалентной связи акцепторного атома, требуется всего лишь 0,01 эВ. При комнатной температуре таких переходов будет столько, сколько акцепторной примеси в п/п. При этом снижается вероятность занятия электронами уровней в валентной зоне, а вероятность появления дырок в этой зоне увеличивается. Наличие большого числа дырок приводит к усилению рекомбинации, и это снижает вероятность нахождения электронов на уровнях зоны проводимости. На зонной диаграмме это отражается соответствующим смещением вниз кривой Fкв(W) и уровня Ферми.
Установлено, что во сколько раз возрастает концентрация носителей одного знака, во столько раз уменьшается концентрация носителей другого знака. Поэтому произведение концентраций носителей противоположных зарядов для данного п/п при заданной температуре будет величиной постоянной. Nn*Pn=Ni*Pi=Ni2 Pp*Np=Ni*Pi=Pi2
В собственном п/п, металле, примесном п/п при приложении э.п. возникает ток, который принято называть дрейфовым током. При внедрении примесей в п/п возможна такая ситуация, когда в одной части п/п одноименных носителей заряда будет больше, чем в другой части. В этом случае возникает перемещение носителей заряда в направлении понижения их концентрации, т.е. диффузия. Такое перемещение зарядов образует ток диффузии, который прямо пропорционален градиенту концентрации: Grad N = dN/dX
Где dN – изменение концентрации носителей заряда данного знака; dX – расстояние, на котором происходит это изменение. Плотность тока диффузии, образованного перемещением электронов (дырок) в п/п, определяется следующим выражением: Jдиф n = qDN gradN = qDN DN – коэффициент диффузии электронов
jT – температурный потенциал (при комнатной температуре – 25мВ)
Электронно-дырочный переход
Р-n – переходы образуются при контакте двух п/п с различной проводимостью. P-n – переходы могут создаваться либо сплавлением двух кристаллов одного и того же типа с различной проводимостью(диффузия), либо путём введения с поверхности акцепторных или донорных примесей (ионоипмлантация). Данными способами осуществляется идеальный контакт двух п/п с различной проводимостью, но с одинаковой по величине запрещёнными зонами. P-n – переходы бывают: · Симметричные (концентрация носителей в p- и n-областях одинакова); · Несимметричные (разная концентрация носителей в этих областях) Могут быть р-n – переходы, у которых имеется градиент концентрации носителей. Симметричные переходы могут быть: · Резкими (переходная область невелика); · Сплавными (переходная область значительно больше); · P-p+ и n-n+ (переход образован п/п одного типа, но с разными концентрациями примесей); · P-i и n-i – переходы (образованы примесным и собственным п/п); · P-i-n; · Переходы, образованные при контакте металла с п/п.
Дата добавления: 2014-12-07; Просмотров: 769; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |