КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Solution. Figure 5. Floating ball problem
Figure 5. Floating ball problem Figure 1: Geometrical representation of the Secant method Example 1: You are working for ‘DOWN THE TOILET COMPANY’ that makes floats for ABC commodes. The ball has a specific gravity of 0.6 and has a radius of 5.5 cm. You are asked to find the distance to which the ball will get submerged when floating in water.
The equation that gives the depth x to which the ball is submerged under water is given by Use the secant method of finding roots of equations to find a) the depth x to which the ball is submerged under water. Conduct three iterations to estimate the root of the above equation. b) find the absolute relative approximate error at the end of each iteration, and c) the number of significant digits at least correct at the end of each iteration. Let us assume the initial guesses of the root of as and Iteration #1 The estimate of the root is
= 0.06461
The absolute relative approximate error, at the end of iteration #1 is The number of significant digits at least correct is 0, as you need an absolute relative approximate error of at less than 5% for one significant digit to be correct in your result. Iteration #2
The absolute relative approximate error, at the end of iteration #1 is = 3.525% The number of significant digits at least correct is 1, as you need an absolute relative approximate error of less than 5%. Iteration #3
The absolute relative approximate error, at the end of iteration #1 is The number of significant digits at least correct is 1, as you need an absolute relative approximate error is at least 5%.
Дата добавления: 2014-12-27; Просмотров: 367; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |