КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Эволюция информатики. Истоки и этапы развития информационных технологий
Свойства информации Достоверность информации. В момент регистрации сигнала не все сигналы являются полезными. Присутствует «информационный шум». При увеличении уровня шумов достоверность снижается. В этом случае при передаче того же количества информации требуется использовать либо больше данных, либо более сложные методы анализа информации. Актуальность информации – степень соответствия информации текущему моменту времени. Доступность информации – мера возможности получить ту или иную информацию. На степень доступности информации влияют одновременно как доступность данных, так и доступность адекватных методов для их интерпретации. Избыточность – это свойство, полезность которого человек ощущает очень часто, как качество, которое позволяет ему меньше напрягать свое внимание и меньше утомляться. Обычный текст на русском языке имеет избыточность 20 – 25 %. Видеоинформация имеет избыточность до 98 – 99 %, что позволяет нам рассеивать внимание и отдыхать, например, при просмотре кинофильма. Объективность информации – это понятие является относительным. Например, принято считать, что в результате наблюдения фотоснимка объекта информация будет более объективной, чем в результате наблюдения рисунка того же объекта. Полнота информации – во многом характеризует её качество и определяет достаточность данных для принятия решений. Чем полнее данные, тем шире диапазон методов, которые можно использовать. Информация может существовать в самых разнообразных формах: · в форме световых, звуковых или радиоволн; · в форме электрического тока или напряжения; · в форме магнитных полей; · в виде знаков на бумаге и др. В принципе информацию может переносить любая материальная структура или поток энергии. Под обработкой информации в информатике понимают любое преобразование информации из одного вида в другой, производимое по строгим формальным правилам. Компьютеры обрабатывают информацию путем выполнения некоторых алгоритмов. Система, предназначенная для передачи и преобразования информации, называется информационной системой (ИС). Что такое информационные технологии? Информационные технологии (ИТ) – это технологии для создания и нформационных систем и управления ими. На ранних этапах развития общества профессиональные навыки передавались в основном личным примером по принципу «делай, как я». В качестве форм передачи информации использовались ритуальные танцы, обрядовые песни, устные предания и т.д. Первый этап развития информационной технологии связан с открытием способов длительного хранения информации на материальном носителе. Это – пещерная живопись, гравировка по кости (лунный календарь, числовые нарезки для измерения). Период между появлением инструментов для обработки материальных объектов и регистрации информационных образов составляет около миллиона лет. Второй этап развития информационной технологии начал свой отсчет около 6 тыс. лет назад и связан с появлением письменности. Эра письменности характеризуется появлением технологии регистрации на материальном носителе символьной информации. Применение этих технологий позволяет хранить и накапливать знания. В качестве носителей информации выступали и до сих пор выступают: камень, кость, дерево, глина, папирус, шелк, бумага. (Сейчас можно добавить магнитные покрытия, жидкие кристаллы, оптические носители, полупроводники и т.д.). В этот период накопление знаний происходит достаточно медленно, чтообусловлено трудностями, связанными с доступом к информации. Рукописные издания хранились вединичных экземплярах, доступ к которым был существенно затруднен. Этот барьер был разрушен на следующем этапе. Начало третьего этапа датируется 1445 годом, когда Иоганн Гуттенберг изобрел печатный станок. Появление книг открыло доступ к информации широкому кругу людей и резко ускорило темпы накопления систематизированных по отраслям знаний. С этого момента началось бурное развитие технологической цивилизации. Книгопечатание – это первая информационная революция. Четвертый этап развития информационной технологии начинается в 1946 году с появлением первой вычислительной машины для обработки информации. (ПерваяЭВМ ENIAC запущена в эксплуатацию в Пенсильванском университете.) Пятый этап развития информационной технологии наступил в 1982 году после публикации эталонной модели взаимодействия открытых систем – ЭМ ВОС – ISO (Open Systems Interconnection).
Глава 2. АРХИТЕКТУРА ЭВМ 2.1. Эволюция ЭВМ – пять поколений Смена поколений ЭВМ характеризуется, с одной стороны; изменением элементной базы и структуры ЭВМ, а с другой – развитием системы программного обеспечения, что отображено в табл. 2.1. Термин «поколение» возник в 50-х годах, когда на смену первых ЭВМ на лампах пришли машины нового поколения на полупроводниках. 1-е поколение, 1945–1955 годы Особенности ЭВМ: применение вакуумно-ламповой технологии, использование систем памяти на ртутных линиях задержки, магнитных барабанах, электронно-лучевых трубках (трубках Вильямса). Для ввода-вывода данных использовались коммутационные панели, перфоленты и перфокарты, магнитные ленты и печатающие устройства. Была реализована концепция хранимой программы. Быстродействие (количество операций в секунду): 10 – 20 тыс. Программное обеспечение: машинные языки (машинные команды). Примеры: ENIAC (США) МЭСМ, Стрела, Урал, Минск-2 (СССР). 2-е поколение, 1955–1965 годы Особенности ЭВМ: замена электронных ламп, как основных элементов компьютера, на транзисторы. Компьютеры стали более надежными, быстродействие их повысилось, потребление энергии уменьшилось. С появлением памяти на магнитных сердечниках цикл ее работы уменьшился до десятков микросекунд. Главный принцип структуры – централизация. Появились устройства памяти на магнитных дисках. Быстродействие (операций в секунду):100-500 тыс. Программное обеспечение: Алгоритмические языки, диспетчерские системы, пакетный режим обработки заданий. Примеры: IBM 701 (США) БЭСМ-6, БЭСМ-4, Минск-22, Минск-32 (СССР). Табл.2.1. Эволюция ЭВМ
3-е поколение, 1966 – 1975 годы Особенности ЭВМ: Компьютеры проектировались на основе полупроводниковых интегральных схем малой степени интеграции (МИС – 10 – 100 компонентов на кристалл) и средней степени интеграции (СИС – 100 – 1000 компонентов на кристалл). Появилась и была реализована идея проектирования семейства компьютеров с одной и той же архитектурой. В конце 60-х годов появились мини-компьютеры. В 1971 году появился первый микропроцессор. Быстродействие (количество операций в секунду):порядка 1 млн. Программное обеспечение:операционные системы, режим разделения времени. Примеры:IBM 360 (США), БЭСМ – 6, ЕС – 1030, ЕС – 1060 (СССР).
Дата добавления: 2014-12-27; Просмотров: 812; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |