Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод наименьших квадратов для линейной функции




Начнем с задачи точечного и доверительного оценивания линейной прогностической функции одной переменной.

Исходные данные – набор n пар чисел (tk , xk), k = 1,2,…,n, где tk – независимая переменная (например, время), а xk – зависимая (например, индекс инфляции, курс доллара США, объем месячного производства или размер дневной выручки торговой точки). Предполагается, что переменные связаны зависимостью

xk = a (tk - tср)+ b + ek , k = 1,2,…,n,

где a и b – параметры, неизвестные исследователю и подлежащие оцениванию, а e k – погрешности, искажающие зависимость. Среднее арифметическое моментов времени

tср = (t1 + t2 +…+tn) / n

введено в модель для облегчения дальнейших выкладок.

Обычно оценивают параметры a и b линейной зависимости методом наименьших квадратов. Затем восстановленную зависимость используют для точечного и интервального прогнозирования.

Как известно, метод наименьших квадратов был разработан великим немецким математиком К. Гауссом в 1794 г. Согласно этому методу для расчета наилучшей функции, приближающей линейным образом зависимость x от t, следует рассмотреть функцию двух переменных


Оценки метода наименьших квадратов - это такие значения a* и b*, при которых функция f(a,b) достигает минимума по всем значениям аргументов. Чтобы найти эти оценки, надо вычислить частные производные от функции f(a,b) по аргументам a и b, приравнять их 0, затем из полученных уравнений найти оценки: Имеем:

Преобразуем правые части полученных соотношений. Вынесем за знак суммы общие множители 2 и (-1). Затем рассмотрим слагаемые. Раскроем скобки в первом выражении, получим, что каждое слагаемое разбивается на три. Во втором выражении также каждое слагаемое есть сумма трех. Значит, каждая из сумм разбивается на три суммы. Имеем:


Приравняем частные производные 0. Тогда в полученных уравнениях можно сократить множитель (-2). Поскольку

(1)

уравнения приобретают вид

Следовательно, оценки метода наименьших квадратов имеют вид

(2)


 

В силу соотношения (1) оценку а* можно записать в более симметричном виде:

Эту оценку нетрудно преобразовать и к виду

Следовательно, восстановленная функция, с помощью которой можно прогнозировать и интерполировать, имеет вид

x*(t) = a*(t - tср)+ b*.

Обратим внимание на то, что использование tср в последней формуле ничуть не ограничивает ее общность. Сравним с моделью вида

xk = c tk+ d + ek , k = 1,2,…,n.

Ясно, что

Аналогичным образом связаны оценки параметров:

Для получения оценок параметров и прогностической формулы нет необходимости обращаться к какой-либо вероятностной модели. Однако для того, чтобы изучать погрешности оценок параметров и восстановленной функции, т.е. строить доверительные интервалы для a*, b* и x*(t), подобная модель необходима.

Непараметрическая вероятностная модель. Пусть значения независимой переменной t детерминированы, а погрешности ek, k = 1,2,…,n, - независимые одинаково распределенные случайные величины с нулевым математическим ожиданием и дисперсией неизвестной исследователю.

В дальнейшем неоднократно будем использовать Центральную Предельную Теорему (ЦПТ) теории вероятностей для величин ek , k = 1,2,…,n (с весами), поэтому для выполнения ее условий необходимо предположить, например, что погрешности ek , k = 1,2,…,n, финитны или имеют конечный третий абсолютный момент. Однако заострять внимание на этих внутриматематических "условиях регулярности" нет необходимости.

Асимптотические распределения оценок параметров. Из формулы (2) следует, что

(5)

Согласно ЦПТ оценка b* имеет асимптотически нормальное распределение с математическим ожиданием b и дисперсией оценка которой приводится ниже.


Из формул (2) и (5) вытекает, что

Последнее слагаемое во втором соотношении при суммировании по i обращается в 0, поэтому из формул (2-4) следует, что

(6)

Формула (6) показывает, что оценка является асимптотически нормальной с математическим ожиданием и дисперсией

Отметим, что многомерная нормальность имеет быть, когда каждое слагаемое в формуле (6) мало сравнительно со всей суммой, т.е.


Из формул (5) и (6) и исходных предположений о погрешностях вытекает также несмещенность оценок параметров.

Несмещенность и асимптотическая нормальность оценок метода наименьших квадратов позволяют легко указывать для них асимптотические доверительные границы (аналогично границам в предыдущей главе) и проверять статистические гипотезы, например, о равенстве определенным значениям, прежде всего 0.

Асимптотическое распределение прогностической функции. Из формул (5) и (6) следует, что

т.е. рассматриваемая оценка прогностической функции является несмещенной. Поэтому

При этом, поскольку погрешности независимы в совокупности и , то

Таким образом,

Итак, оценка является несмещенной и асимптотически нормальной. Для ее практического использования необходимо уметь оценивать остаточную дисперсию

Оценивание остаточной дисперсии. В точках tk , k = 1,2,…,n, имеются исходные значения зависимой переменной xk и восстановленные значения x*(tk). Рассмотрим остаточную сумму квадратов

В соответствии с формулами (5) и (6)

Найдем математическое ожидание каждого из слагаемых:

Из сделанных ранее предположений вытекает, что при имеем следовательно, по закону больших чисел статистика SS/n является состоятельной оценкой остаточной дисперсии .

Получением состоятельной оценкой остаточной дисперсии завершается последовательность задач, связанных с рассматриваемым простейшим вариантом метода наименьших квадратов. Не представляет труда выписывание верхней и нижней границ для прогностической функции:

где погрешность имеет вид

Здесь p - доверительная вероятность, U(p), как и в главе 4 - квантиль нормального распределения порядка (1+р)/2, т.е.

При p= 0,95 (наиболее применяемое значение) имеем U(p) = 1,96. Для других доверительных вероятностей соответствующие значения квантилей можно найти в статистических таблицах (см., например, наилучшее в этой сфере издание [9]).

Сравнение параметрического и непараметрического подходов. Во многих литературных источниках рассматривается параметрическая вероятностная модель метода наименьших квадратов. В ней предполагается, что погрешности имеют нормальное распределение. Это предположение позволяет математически строго получить ряд выводов. Так, распределения статистик вычисляются точно, а не в асимптотике, соответственно вместо квантилей нормального распределения используются квантили распределения Стьюдента, а остаточная сумма квадратов SS делится не на n, а на (n-2). Ясно, что при росте объема данных различия стираются.

Рассмотренный выше непараметрический подход не использует нереалистическое предположение о нормальности погрешностей. Распределения, встречающиеся в задачах менеджмента, как правило, не являются нормальными [1]. Платой за отказ от нормальности является асимптотический характер результатов. В случае простейшей модели метода наименьших квадратов оба подхода дают практически совпадающие рекомендации. Это не всегда так, не всегда два подхода бают близкие результаты. Например, в задаче обнаружения выбросов методы, опирающиеся на нормальное распределение, нельзя считать обоснованными, и обнаружено это было с помощью непараметрического подхода [1].

Общие принципы. Кратко сформулируем несколько общих принципов построения, описания и использования эконометрических методов анализа данных. Во-первых, должны быть четко сформулированы исходные предпосылки, т.е. полностью описана используемая вероятностно-статистическая модель. Во-вторых, не следует принимать предпосылки, которые редко выполняются на практике. В-третьих, алгоритмы расчетов должны быть корректны с точки зрения математико-статистической теории. В-четвертых, алгоритмы должны давать полезные для практики выводы.

Применительно к задаче восстановления зависимостей это означает, что целесообразно применять непараметрический подход, что и сделано выше.

Пример оценивания по методу наименьших квадратов. Пусть даны n = 6 пар чисел (tk , xk), k = 1,2,…,6, представленных во втором и третьем столбцах табл.1. В соответствии с формулами (2) и (4) выше для вычисления оценок метода наименьших квадратов достаточно найти суммы выражений, представленных в четвертом и пятом столбцах табл.1.

Таблица 1.

Расчет по методу наименьших квадратов при построении линейной прогностической функции одной переменной

i ti xi ()2
          3,14 12,17 -0,17 0,03
          9,42 18,45 1,55 2,40
          12,56 21,59 -1,59 2,53
          21,98 31,01 0,99 0,98
          28,26 37,29 -2,29 5,24
          31,40 40,43 1,57 2,46
            0,06 13,64
5,67 26,83 42,67 185,17        

В соответствии с формулой (2) b* =26,83, а согласно формуле (4)

Следовательно, прогностическая формула имеет вид

Следующий этап анализа данных - оценка точности приближения функции методом наименьших квадратов. Сначала рассматриваются т.н. восстановленные значения

Это те значения, которые полученная в результате расчетов прогностическая функция принимает в тех точках, в которых известны истинные значения зависимой переменной xi.

Вполне естественно сравнить восстановленные и истинные значения. Это и сделано в шестом - восьмом столбцах табл. 1. Для простоты расчетов в шестом столбце представлены произведения , седьмой отличается от шестого добавлением константы 9,03 и содержит восстановленные значения. Восьмой столбец - это разность третьего и седьмого.

Непосредственный анализ восьмого столбца табл.1 показывает, что содержащиеся в нем числа сравнительно невелики по величине по сравнению с третьим столбцом (на порядок меньше по величине). Кроме того, знаки "+" и "-" чередуются. Эти два признака свидетельствуют о правильности расчетов. При использовании метода наименьших квадратов знаки не всегда чередуются. Однако если сначала идут только плюсы, а потом только минусы (или наоборот, сначала только минусы, а потом только плюсы), то это верный показатель того, что в вычислениях допущена ошибка.

Верно следующее утверждение.




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 479; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.031 сек.