Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теоретические положения. Конденсатор представляет собой систему из двух пластин, разделенных слоем диэлектрика




Конденсатор представляет собой систему из двух пластин, разделенных слоем диэлектрика. Емкость конденсатора зависит от формы пластин, их размеров, взаимного расположения, а также от диэлектрической проницаемости среды, находящейся между пластинами. Емкость плоского конденсатора, выраженная в фарадах, определяется по формуле

С = ε · εо · S/h,

где S – площадь пластин, м2;

h – расстояние между пластинами, м;

εо – абсолютная диэлектрическая проницаемость вакуума, εо = 8,85∙10-8 Ф/м;

ε – относительная диэлектрическая проницаемость среды между пластинами.

Значение диэлектрической проницаемости электроизоляционного материала не остается постоянным при колебаниях температуры, что приводит к изменению емкости конденсатора. Увеличение температуры конденсатора в процессе работы вызвано наличием диэлектрических потерь энергии, возникающих при воздействии на диэлектрик электрического поля. В технике диэлектрические потери обычно характеризуются углом диэлектрических потерь, или чаще тангенсом этого угла. Углом диэлектрических потерь называют угол, дополняющий до 90о угол сдвига фаз j между током I и напряжением U в емкостной цепи (рис. 1.1). Чем больше рассеиваемая в диэлектрике мощность, переходящая в тепло, тем меньше угол сдвига фаз j и тем больше угол диэлектрических потерь d и его функция tgd.

Для правильного выбора условий работы конденсатора нужно знать, как влияет увеличение температуры на диэлектрические потери в нем. Недопустимо большие потери в электроизоляционном материале могут вызвать сильный перегрев конденсатора и привести его к тепловому разрушению. Это происходит потому, что рост температуры при определенных условиях вызывает увеличение выделяющейся в диэлектрике энергии и вследствие этого дальнейший рост температуры, т. е. приводит к неограниченному росту температуры и заканчивается тепловым пробоем диэлектрика. В ряде точных приборов необходимо считаться и с небольшим изменением емкости и tgd при колебаниях температуры. Так, изменение емкости эталонных конденсаторов приводит к появлению дополнительной погрешности в измерениях. Изменение емкости и активного сопротивления конденсатора может привести к отклонению от заданной частоты в колебательном контуре и т. д.

Для оценки изменения диэлектрической проницаемости в зависимости от температуры применяют температурный коэффициент диэлектрической проницаемости ТКε, который выражается формулой

ТКε = ,

где ε1 и ε2 – диэлектрическая проницаемость образца при температурах t1 и t2 соответственно, причем t2 > t1; TKe – температурный коэффициент, град.-1

 

 

Рис. 1.1. Определение угла диэлектрических потерь

В зависимости от типа материала и температурного диапазона диэлектрическая проницаемость его с ростом температуры может увеличиваться или уменьшаться. Так, для диэлектриков с электронной поляризацией с увеличением температуры поляризованность слабо снижается (в основном за счет расширения тела), т. е. коэффициент ТКε отрицателен.

В большинстве случаев при ионной поляризации диэлектрики имеют положительный температурный коэффициент диэлектрической проницаемости. Эта закономерность объясняется тем, что при повышении температуры ослабляются упругие силы связи между ионами в узлах кристаллической решетки, что облегчает смещение ионов в электрическом поле и приводит к некоторому увеличению диэлектрической проницаемости.

Значительно сложнее влияние температуры на диэлектрическую проницаемость материалов с дипольной поляризацией. Повышение температуры действует на дипольную поляризацию двояко: за счет ослабления межмолекулярных связей ориентация диполей должна облегчаться, а за счет усиления теплового движения – ослабляться, т.к. сильное тепловое хаотическое движение будет мешать упорядочению расположения молекул. При достаточно низких температурах за счет усиления межмолекулярных связей и резко пониженной подвижности молекул дипольная поляризация проявляется слабо и диэлектрическая проницаемость оказывается небольшой. При достаточно высокой температуре за счет усиления теплового движения, затрудняющего ориентацию диполей электрическим полем, дипольная поляризация тоже будет ослаблена. При оптимальном значении температуры дипольная поляризация выражена наиболее сильно и диэлектрическая проницаемость достигает максимума. Такую зависимость имеет, например, совол (рис. 1.2). В конденсаторах в качестве изоляции может применяться одновременно несколько диэлектриков, например, конденсаторная бумага, пропитанная жидким диэлектриком. В этом случае зависимость диэлектрической проницаемости от температуры может оказаться еще сложнее.

В лабораторной работе измеряется не коэффициент ТКε, а температурный коэффициент емкости ТКС, который определяется по формуле

ТКС = ,

где С1 и С2 – емкости образца при температурах t1 и t2 соответственно. Для практических расчетов важнее знать именно этот коэффициент.

Связь между коэффициентами ТКС и ТКe определяется формулой

ТКС = ТКe + a,

где a – температурный коэффициент линейного расширения.

 

 

Рис. 1.2. Зависимость диэлектрической проницаемости от температуры
для полярного диэлектрика

 

Лабораторную работу выполняют на экспериментальной установке. Внешний вид установки показан на рисунке 1.3. Установка состоит из лабораторной электропечи сопротивления, двух цифровых приборов ELC-131D для измерения емкости (С) и тангенса диэлектрических потерь (tgδ) и D-890G для измерения температуры нагрева конденсаторов, а также из двух конденсаторов с разными видами поляризации.

 

 

Рис. 1.3. Внешний вид экспериментальной установки




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 909; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.