Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теоретические положения. 1. Построить зависимости изменения сопротивления меди и алюминия от температуры в диапазоне от 10 до 293 К R = f(Т) и lgR = f(lgT)




ИССЛЕДОВАНИЕ КРИОПРОВОДИМОСТИ МЕТАЛЛОВ

Лабораторная работа № 3

Цели работы:

1. Построить зависимости изменения сопротивления меди и алюминия от температуры в диапазоне от 10 до 293 К R = f(Т) и lgR = f(lgT).

2. Определить по ним зависимости изменения удельных сопротивлений и температурных коэффициентов сопротивления от температуры. r = f(Т), lg(r) = = f(lgT) и TKR = f(Т).

3. Определить по зависимостям r = f(Т) относительные сопротивления Rт для меди и алюминия и сравнить их.

Криопроводимость – это достижение металлами весьма малого значения удельного сопротивления при криогенных температурах (но без перехода в сверхпроводящее состояние). Криогенные температуры – это температуры
Т < 120 К. Эти температуры используются для изготовления токопроводящих жил проводов и кабелей, работающих при температурах жидких водорода
(20,4 К), неона (27,3 К), азота (77,4 К).

Полное удельное сопротивление металлов можно представить как сумму двух составляющих [4]:

r = rтепл + rост,

где rтепл – удельное сопротивление, обусловленное тепловыми колебаниями решетки; rост – остаточное сопротивление, обусловленное рассеянием электронов на дефектах кристаллической решетки (примесные атомы, вакансии, дислокации и др.)

При температурах, превышающих температуру Дебая (для металлов
Tд >100 K), удельное сопротивление обусловлено главным образом тепловыми колебаниями решетки (rтепл) и возрастает практически линейно (рис. 3.1). При низких (криогенных) температурах удельное сопротивление практически перестает зависеть от температуры и определяется остаточным сопротивлением rост, являющимся количественной мерой концентрации дефектов кристаллической решетки.

В качестве криопроводников целесообразно использовать металлы исключительно высокой чистоты и хорошо отожженные. Дело в том, что из-за искажения кристаллической решетки после холодной обработки металлов их удельное сопротивление увеличивается на 1–3 %. Если металл подвергнуть отжигу, т. е. нагреву до нескольких сот градусов, то в результате рекристаллизации восстанавливается искаженная кристаллическая решетка, а удельное сопротивление вновь уменьшается. Мерой качества криопроводникового материала служит относительное сопротивление Rт, определяемое как отношение удельного сопротивления металла при 20 °С (293 К) к удельному сопротивлению при криогенной температуре [4].

 

 

Рис. 3.1. Типичная зависимость удельного сопротивления металла
от температуры

 

В качестве криогенного материала могут использоваться бериллий, медь, алюминий. При температурах жидкого азота (77,4 К) наиболее перспективен бериллий, так как он имеет удельное сопротивление примерно в 10 раз ниже по сравнению со сверхчистыми медью и алюминием. У отожженной проводниковой меди с содержанием примесей 0,03 % относительное удельное сопротивление Rт может доходить при температурах жидкого водорода до Rт 190–200, а у особо чистой (99,999 %) меди – до Rт 1430.

Наилучшим криопроводником для работы при температуре жидкого водорода является алюминий [4], удельное сопротивление которого при температуре 20 К является минимальным по сравнению с другими металлами. Кроме того, сумма потерь на охлаждение в криопроводнике проходит через четкий минимум при температуре 20 К. В качестве криопроводникового материала нашел применение алюминий особой и высокой чистоты марок А999 и А995. Алюминий марки А995, содержащий 0,005 % примесей, позволяет получать при криогенных температурах токоведущие жилы с относительным сопротивлением Rт 1000–1500. Для алюминия марки А999 относительное сопротивление достигает Rт 2400.




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 458; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.