Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Начальные логические приемы мышления 2 страница




Так, в одном из опытов, проведенном в московской школе, учащиеся седьмого класса безошибочно воспроизводили определение окружности, но когда им предъявили эллипс, замкнутую кривую произвольной формы и спросили, можно ли эти фигуры назвать окружностью, - они ответили ут­вердительно. Беседа с учениками показала, что при распознавании окружно­стей они опираются не на всю совокупность признаков, которые указаны в определении окружности и которые они заучили, а только на замкнутость кривой и наличие во внутренней области точки, которую они называют центром. Аналогично учащиеся шестых-седьмых классов нередко смежными углами соглашаются назвать любые два угла, составляющие в сумме 180°. Они хорошо знают, что любые смежные углы обладают этим свойством, т. е. они усвоили, что это свойство является необходимым для всех объектов, относящихся к данному классу предметов. Но школьники его используют и как достаточное: считают, что все объекты, обладающие этим свойством, относятся к данному классу предметов, что уже неверно, так как этим свой­ством обладают и объекты, не относящиеся к данному классу. Так, прямые вертикальные углы также в сумме составляют 180°, а смежными не являются.

В связи с этим особенно важно специально поработать над системой свойств, в совокупности являющихся достаточными для определения объектов данного класса. При этом обязатель­но надо показать, что учет лишь одного из свойств данной сис­темы не позволяет определить объекты однозначно, так как это свойство может быть общим для предметов разных классов.

Все указанные компоненты приема подведения под поня­тие связаны с определенными предметными знаниями и спе­цифическими действиями, характерными для данного предме­та; в нашем случае - геометрии. В самом деле, учащиеся, про­веряя наличие искомых признаков у данного объекта, могут использовать различные методы, характерные для математи­ки, химии, русского языка и т.д. Но во всех случаях общие требования к подведению (проверка наличия определенной системы признаков) задает логика. Логика же задает требова­ния и к оценке полученных результатов. Их можно сформули­ровать следующим образом. Предмет относится к данному понятию в том и только в том случае, когда он обладает всей системой необходимых и достаточных признаков, что можно изобразить так:

признак 1 «+»

признак 2 «+»

……… +

……..

признак n «+»

 

Если предмет не обладает хоть одним из них, то он не от­носится к данному понятию, что можно изобразить так:

 

признак 1 «+» (?)

признак 2 «+» (?)

………… _

признак m «-»

признак n «+»

 

При этом следует отметить, что отрицательный ответ бу­дет при отсутствии любого признака.

Если же нет положительной информации хотя бы про один признак, то при наличии всех остальных признаков ответ оста­ется неопределенным: неизвестно, принадлежит или не принад­лежит предмет к данному понятию. Это можно изобразить так:

 

 

признак 1 «+»

признак 2 «+»

…………?

признак m «?»

признак n «+»

 

Правило подведения под понятие и умение корректно пользоваться им при работе с любыми понятиями относится к логическому компоненту данного приема.

Учащиеся, получая задания на подведение объектов под различные понятия, постепенно усваивают этот важный при­ем. При работе с ним особое внимание надо уделить третьему случаю: ответ неопределенный. Задания с неопределенными условиями неизменно дают большой процент ошибок. Этот случай трудней усваивается, чем другие, даже при целена­правленной работе. Отсутствие указаний о том или ином при­знаке учащиеся обычно расценивают как отсутствие самого признака. Например, в задаче: «Даны две пересекающиеся прямые. Будут ли они перпендикулярными?» - учащиеся дают отрицательный ответ. Они мотивируют это тем, что в условии не сказано, что прямые пересекаются под прямым углом. От­вет неверный, так как в условии в равной мере не сказано, что прямые пересекаются не под прямым углом. Следовательно, об этом признаке мы не получаем никакой информации, что и создает ситуацию неопределенности: может быть, угол пря­мой, а может быть, не прямой. В силу этого правильный ответ в таких задачах: «Неизвестно».

Говоря о действии подведения под понятие, мы подчерки­вали, что объект относится к тому или иному понятию тогда и только тогда, когда обладает всей системой необходимых и одновременно достаточных признаков. Но так бывает только при подведении под понятия, где признаки связаны союзом «и - и» (конъюнктивная структура понятия). Кроме них, есть понятия с другой структурой признаков: связанных союзом «или - или» (дизъюнктивная структура признаков). В этом случае правило подведения под понятие другое: для отнесения предмета к данному классу предметов достаточно наличия лишь одного из указанных признаков. При работе с учащи­мися эти два случая подведения под понятие необходимо различать. Если же этого не делать, то у учащихся может не сформироваться правильных приемов подведения, и они бу­дут ошибаться.

Как мы видели, задачи на подведение под понятие с дизъюнктивной структурой признаков вызывают у учащихся серьезные трудности. Они доставляют немало хлопот и взрослым, если они не владеют этим приемом. Характерно, что задачи: «Я тебе мать, а ты мне не дочь», «У двух зрячих есть слепой брат, но у него нет братьев» и т.п. - нередко относят к головоломкам.

Какой же логический прием подведения под понятие тре­буется в подобных случаях? Схематически характер связей в данном случае следующий:

 

 

Если в ранее показанном случае отсутствие хоть одного признака означало непринадлежность предмета к данному понятию, то в данном случае это не так: если нет признака В, то мы не имеем права делать отрицательный вывод. Мы должны обратиться к признаку С. Так, в случае понятия «мать» отсутствие дочери не мешает быть матерью, для этого достаточно иметь сына.

Правило подведения под понятие с дизъюнктивной структурой признаков уже другое: «Предмет относится к данному |понятию, если он обладает хотя бы одним признаком из числа оказанных. Если же предмет не обладает ни одним из этих признаков, то он не относится к данному понятию. Если ни про один из признаков нет точных сведений (неизвестно, есть он или его нет), то мы не может сказать, относится или не относится этот предмет к данному понятию».

 

 

Схематически это правило можно изобразить так:

 

1. признак 1 «-»

признак 2 «-»

………….«-» +

………….«-»

признак n «+»

 

 

2. признак 1 «-»

признак 2 «-»

………….«-» -

…………. «-»

признак n «-»

 

3. признак 1 «?»

признак 2 «?»

………. «?»?

………. «?»

признак n «?»

 

 

4. признак 1 «?»

признак 2 «-»

……… «?»?

……… «-»

признак n «?»

 

Знакомство с этим приемом можно начать с указанных про­стых житейских примеров, а потом уже перейти и к учебному материалу. Так, когда учащиеся изучают виды предложений, то ряд понятий имеет дизъюнктивную структуру признаков. При­мером могут служить неполные предложения. Для отнесения предложения к этому понятию достаточно одного из двух при­знаков, соединенных союзом «или - или»: или нет подлежаще­го, или нет сказуемого. Таким образом, этот прием мышления необходим для успешного усвоения учебного материала и его формирование следует начинать уже в начальной школе.

Если при усвоении нескольких понятий (одни из которых имеют конъюнктивную структуру признаков, а другие - дизъюнктивную) учитель научит учеников логически строго выполнять действие подведения под понятие, то в дальнейшем это действие они будут успешно использовать при работе с любыми понятиями.

Уже в начальной школе можно приступить к работе над определениями. Но до этого дети должны усвоить отношения между родовыми и видовыми понятиями. При этом особое внимание следует обратить на то, что видовое понятие обяза­тельно обладает всеми свойствами родового, а родовое явля­ется следующей ступенью обобщения. При этом следует отме­тить, что в определение входят только необходимые и одно­временно достаточные признаки.

Без понимания видо-родовых отношений учащиеся не смогут полноценно усвоить программный материал. Так, уже при обучении детей звуковому анализу учитель вводит целую систему видо-родовых отношений: вначале вводится понятие о звуке, затем - о гласных и согласных звуках, а согласные, в свою очередь, делятся на мягкие и твердые. Как показал наш опыт работы в одном из детских садов г. Москвы (детсад № 936), дети шести лет способны понять видо-родовые отношения. Характер этих отношений можно за­фиксировать в виде трех цветных кружков, вписанных один в другой. Например, желтый круг означает все множество звуков, а красный круг внутри желтого - означает гласные звуки, зеленый круг на фоне желтого - согласные звуки, а мягкие и твердые согласные можно обозначить кругами разного цвета на фоне кругов, обозначающих согласные. В этом случае дети наглядно будут видеть, что мягкие (твердые) согласные - это звуки, являющиеся и согласными, и звуками.

Желательно познакомить учащихся и с отношениями со­подчинения. Так, в курсе природоведения можно показать, что к понятию лиственных деревьев относятся самые разные виды, а лиственные, в свою очередь, соподчинены с хвойны­ми: их вместе объединяет понятие «дерево». Все это заложит основу для формирования более сложных приемов логическо­го мышления, в том числе - для понимания структуры опреде­лений, с которыми ученики работают на протяжении всего школьного обучения.

В школе учащийся не знакомится с логической структурой определений: он просто заучивает огромное число различных конкретных определений. И если ученик что-то забывает в определении, то не может путем логического рассуждения восстановить забытое, так как не знает структуры определе­ний, не владеет правилами их построения.

Даже в старших классах учащиеся теряются, когда перед ними встает задача по оценке предложенных определений. Так, в исследовании Н.А. Подгорецкой ученикам десятых клас­сов было предложено 20 определений простейших геометри­ческих понятий: ромб, квадрат, прямоугольник, параллело­грамм, четырехугольник. Среди предложенных определений были как правильные, так и ложные. Школьники должны были указать как те, так и другие. Ошибочные определения содержали такие дефекты, как пропуск ближайшего родового понятия (определение квадрата, например, как геометриче­ской фигуры), наличие только лишь необходимых признаков, неточное указание видовых признаков и др.

Оказалось, что даже хорошо и отлично успевающие уча­щиеся в среднем дали 65% правильных ответов, остальные их ответы были ошибочными. Например, многие учащиеся ука­зали как верное такое определение параллелограмма: «Парал­лелограммом называется четырехугольник, две противопо­ложные стороны которого параллельны». Это определение ошибочное, так как указанные в нем признаки не позволяют. отличить параллелограмм от трапеции. Аналогично опреде­ление квадрата как геометрической фигуры, все стороны и все углы которой равны между собой, многие учащиеся признали правильным, что неверно. Их не смутило то, что квадрат оп­ределяется не через ближайший род (прямоугольник), а через весьма отдаленное понятие - геометрическая фигура. Учащиеся делали ошибки как на расширение, так и на сужение объе­ма определяемых понятий.

Таким образом, видо-родовые отношения понятий, логи­ческие правила определений должны войти в программу фор­мирования логического мышления учащихся.

Следующий логический прием, который широко использу­ется в процессе обучения и без которого невозможно полноцен­ное мышление человека, - прием выведения следствий с соблюде­нием требований закона контрапозиции. Этот прием, как и пре­дыдущие, также обычно не выступает в школе в качестве пред­мета специального усвоения. В силу этого далеко не все уча­щиеся даже старших классов понимают, что одно и то же след­ствие может быть связано с разными основаниями, и поэтому от наличия следствия нельзя переходить к утверждению нали­чия основания. Так, учащиеся правильно указывают, что если углы смежные, то их сумма равна 180°. Но нельзя утверждать, как это делают некоторые ученики, обратное: если сумма углов равна 180°, то они являются смежными (прямые вертикальные углы равны в сумме 180°, но они не являются смежными). Одно и то же следствие (сумма углов 180°) имеет разные основания.

Учащимся восьмого класса были предложены пары посы­лок, из которых требовалось сделать выводы. Вот некоторые из них: «Если у человека повышена температура, то он болен. У человека не повышена температура». «Если данный четырех­угольник является ромбом, то его диагонали взаимно перпен­дикулярны. Данный четырехугольник не является ромбом».

Подавляющее большинство учащихся и в первом, и во втором случае дали неверные ответы: они сделали вывод, что человек, не имеющий повышенной температуры, не болен, и что у данного четырехугольника диагонали не взаимно пер­пендикулярны.

Суть их ошибки состоит в том, что они сделали вывод с нарушением закона контрапозиции. В чем состоит этот закон? Этот закон нам указывает, когда мы имеем право делать вы­вод, а когда не имеем.

Для удобства работы изобразим сущность закона контрапозиции схематически.

 

1. Если А, то В 2. Если А, то В

Дано А Дано не В

           
   
 
   


Вывод: В Вывод: не А

 

3. Если А, то В 4. Если А, то В

Дано не А Дано В

 

Вывод сделать нельзя Вывод сделать нельзя

 

Первый случай простой: если имеет место А, то из этого следует В. Нам известно, что А налицо. Следовательно, В будет иметь место в обязательном порядке (необходимо следует). Во втором случае известно, что В отсутствует. Но если отсутствует В, которое есть необходимый признак А, то, есте­ственно, мы имеем право сделать вывод о том, что нет и А.

В двух последних случаях вывода сделать нельзя по ука­занным данным. В самом деле, известно, что есть В. Это след­ствие. Известно, что А имеет обязательно следствие В, но это вовсе не означает, что только А имеет такое следствие. По­этому мы не можем сделать вывод, что в этом случае есть А. Аналогично в последнем случае известно, что нет А, но в силу только что сказанного нельзя утверждать, что нет и В, так как оно может быть следствием другого основания. Но именно эту ошибку и допустили ученики. В самом деле, если у челове­ка высокая температура, то можно сделать вывод, что он бо­лен. Но вывод о заболевании можно сделать и на другом ос­новании. Отсутствие высокой температуры вовсе не доста­точно для заключения об отсутствии болезни: очень часто болезнь протекает без температуры. Аналогично положение и во втором случае.

Умение правильно делать выводы надо формировать с первого класса. Для этого учитель может использовать такие, например, задания: «Ребята, вы хорошо знаете, что зимой березки стоят без листьев. Если вы увидели березку без листь­ев, можете вы сказать, что на улице зима?» Или: «Мы знаем, что если идет дождь, то тротуары сырые. Представьте себе, что вы утром вышли из дома и увидели на тротуаре лужицы. Можно ли утверждать, что был дождь?» Учащиеся обычно дают разные ответы. Их следует проанализировать и объяснить: почему они верные или неверные.

Необходимо постепенно подвести школьников к обобщен­ному выражению закона контрапозиции и дать его схематическую запись. При этом важно показать ученикам, что форма «если, то» не всегда есть связь основание-следствие, она может быть условной связью: например, «Если я закончу работу пораньше, то прочитаю эту книгу». Наличие времени не есть причина, по которой человек читает книгу: это лишь условие, при котором он совершит это действие, имеющее свою причину. В тех случаях, когда «если, то» отражает объективную, закономерную связь явлений, следствие обязательно будет иметь место. В самом деле, если четырехугольник является ромбом, то его диагонали всегда перпендикулярны. В случае условной связи такого обязательного следования нет. В приведенном примере человек может закончить работу тогда, когда намечал, и все-таки книгу не прочитать. Может случиться что-то непредвиденное (плохо себя почувствовал, возникла необходимость выполнить какую-то работу и т.д.).

Очень важным приемом логического мышления, исполь­зуемым в процессе всего школьного обучения, является также прием классификации. Часто этот логический прием оказыва­ется не сформирован даже у людей с высшим образованием.

Специальное исследование Н.А. Подгорецкой умения про­водить классификацию старшеклассниками, а также людьми, уже окончившими среднюю школу, показало, что этот прием усвоен ими плохо. Так, только 20% старшеклассников смогли правильно выбрать критерий для классификации, ни один учащийся не сумел соблюсти координацию объема и содержа­ния классифицируемых классов объектов.

В задании на классификацию видов треугольников были допущены следующие типичные ошибки: 1) смешение критери­ев классификации на одном уровне (делили треугольники, на­пример, на прямоугольные, равнобедренные и равносторон­ние); 2) сужение объема понятий классификации (многие учени­ки не указали вида разносторонних треугольников); 3) наруше­ние иерархии: большая часть старшеклассников не понимает, что равносторонний треугольник является частным случаем равнобедренного. Аналогичные ошибки были допущены при классификации видов предложений, видов поверхности суши.

Все это говорит о том, что без специальной работы прием классификации усваивается неудовлетворительно. В состав этого приема входят такие действия, как выбор критерия для классификации; деление по этому критерию всего множества объектов, входящих в объем данного понятия; построение ие­рархической классификационной системы.

Естественно, что формирование этого приема должно про­исходить постепенно, на материале разных учебных предметов.

Не останавливаясь на других приемах логического мыш­ления, укажем, что все рассмотренные нами необходимы для полноценного усвоения изучаемых в школе предметов: дейст­вия, стоящие за этими приемами, и будут служить средством усвоения различных предметных знаний. Важно отметить и то, что на основе этих приемов можно формировать и более сложные методы логического мышления.

Для того чтобы показать важность формирования рас­смотренных элементарных логических приемов, проанализи­руем один из труднейших методов доказательства, с которым ученики встречаются при изучении геометрии, - доказатель­ство методом от противного. Легко показать, что в его со­держание входят в основном рассмотренные нами простейшие логические операции. В самом деле, прежде всего при доказа­тельстве методом от противного строится предположение, что объект, данный в условии теоремы, не обладает теми свойст­вами, которые указаны в заключении теоремы.

Так, например, в одной из теорем о параллельных прямых говорится, что если при пересечении двух прямых третьей накрест лежащие углы равны, то прямые параллельны.

Мы допускаем, что прямые не параллельны. В основе этого лежит так называемая дихотомическая классификация: все прямые на плоскости мы можем поделить на два класса - пересекающиеся и не пересекающиеся, т.е. параллельные. Это значит, что данные нам в условии теоремы прямые обя­зательно должны относиться к одному из этих классов.

Если мы докажем, что прямые не относятся к одному, то они обязатель­но должны относиться ко второму классу.

Мы предполагаем, что они относятся к пересекающимся прямым. После этого мы пользуемся вторым известным уже нам действием - действием выве­дения следствий: мы начинаем получать последовательно все те свойства, которые необходимо следуют из факта принадлежности прямых к классу пере­секающихся. Постепенно мы доходим до такого свойства, которое противоре­чит данным условиям. Значит, с одной стороны, если прямые относятся к пере­секающимся, то они обязаны обладать выведенным свойством, но нам извест­но, что они этим свойством не обладают. Араз прямые не обладают хоть од­ним свойством из системы необходимых, то они не могут относиться к данному классу объектов. Но если они не относятся к пересекающимся, то они могут относиться к не пересекающимся, т. е. к параллельным.

Итак, этот прием, обычно плохо понимаемый учащимися даже старших классов, оказывается построен на нескольких простых действиях: дихотомической классификации, выве­дении следствий, на понятии необходимых свойств. Если все эти компоненты сформировать, то, как показали опыты, учащиеся успешно усваивают и доказательство методом от противного, и доказательства другими методами, что сейчас у большинства учеников вызывает затруднения даже в старших классах.

Мы рассмотрели первый компонент познавательной дея­тельности - логические приемы мышления. Важность их фор­мирования у учащихся не требует доказательств, это очевид­но. Именно поэтому задача формирования логического мыш­ления ставится перед всеми учителями, при изучении всех предметов. Однако такая общая постановка задачи явно не­достаточна. Как мы видели, логическое мышление нельзя фор­мировать с любого приема: они связаны между собой внутрен­ней логикой, поэтому могут быть сформированы только в оп­ределенной последовательности.

Второе важное положение состоит в том, что приемы ло­гического мышления оказываются не усвоенными значитель­ным числом школьников не только в начальных классах, но и в старших. Объясняется это тем, что в процессе обучения учи­теля не делают их предметом специального усвоения, не рас­крывают перед учащимися их структуру, не формируют тех логических понятий, которые необходимы для понимания и правильного выполнения логических приемов мышления.

Вывод, который вытекает из всего вышесказанного, за­ключается в том, что уже в начальной школе при построении содержания обучения необходимо предусмотреть всю систему логических приемов мышления, необходимых для работы с планируемыми предметными знаниями, для решения задач, предусмотренных целями обучения. При этом важно отметить, что хотя логические приемы формируются и используются на каком-то конкретном предметном материале, в то же время они не зависят от этого материала, носят общий, универсаль­ный характер. В силу этого логические приемы, будучи усвое­ны при изучении одного учебного материала, могут в даль­нейшем широко применяться при усвоении других учебных предметов как готовые познавательные средства.

Следовательно, при отборе логических приемов, которые должны быть усвоены при изучении какого-то предмета, сле­дует учитывать межпредметные связи. Если какие-то логиче­ские приемы мышления были сформированы ранее - при изу­чении предыдущих предметов, то при усвоении данного пред­мета нет необходимости формировать их заново. Эти приемы просто используются для усвоения данных знаний. Предме­том специального усвоения должны быть только такие логи­ческие приемы, с которыми учащиеся встречаются впервые.

 




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 432; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.