КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Эпистемическая логика
В качестве эффективного инструмента реконструкции и анализа теоретико-познавательных контекстов и проблем обычно используется особый вид интенсиональной логики – эпистемическая логика. Это направление современной неклассической логики было инициировано пионерской работой Я.Хинтикки "Знание и убеждение" (1962). Основная идея этой работы заключается в интерпретация понятий знания и убеждения как особого рода (эпистемических) модальных операторов, которые добавляются к языку обычной классической логики. Хинтикка, в частности, использует операторы Ка (для знания) и Ва (для убеждения), где выражения Ка р и Ва р обозначают утверждения " а знает, что р " и " а считает (полагает, убежден, думает), что р " соответственно. "Здесь а есть имя некоторого лица, личное местоимение или, возможно, конечное описание некоторого человека, а р есть независимое повествовательное предложение".[440] В дальнейшем изложении, чтобы избежать излишней технической детализации, мы будем использовать эпистемические операторы без явной ссылки на конкретного субъекта познания (т.е. индекс а будет опускаться); при этом всегда неявно подразумевается наличие некоторого фиксированного субъекта. К р означает тогда "(некто) знает, что р " (или просто " р известно"), В р – "(некто) полагает, что р ". Иногда наряду с операторами знания и убеждения вводятся и другие аналогичные эпистемические операторы, например для "сомневается", "опровергает" и т.п. Аппарат эпистемической логики позволяет ставить и успешно решать задачи выявления формальных (логических) свойств операторов знания и убеждения (а значит и соответствующих понятий), формулировки аксиом, выражающих эти свойства, и установления взаимосвязи между данными операторами и понятиями. При этом активно задействуются результаты философского анализа понятий знания и убеждения. Начнем с оператора убеждения. Для этого оператора, дополнительно к аксиомам классической логики, можно принять следующие постулаты: В1. В(р ® q) ® (В р ® В q). (Каждый должен быть убежден в истинности всех следствий принимаемых им допущений.) B2. B p ® ~B~ p. (Невозможно одновременно быть убежденным в истинности какого-нибудь высказывания и его отрицания – рациональный субъект не должен принимать противоречия.) B3. B p ® BB p. (Если некто считает, что р, то он также убежден в том, что он так считает.) B4. ~B p ® B~B p. (Если некто не считает, что р, то он должен быть убежден в том, что он так не считает.) Первые два постулата говорят о том, что мы имеем здесь дело не с дескриптивным, а с рационализированным понятием убеждения. Это понятие выражает не фактические убеждения того или иного конкретного субъекта в том или ином конкретном случае, а принципы, которым должны подчиняться рациональные убеждения вообще.[441] Последние два постулата выражают то обстоятельство, что мы не можем ошибаться касательно того, в чем мы убеждены, а в чем – нет. Субъект всегда имеет определенность относительно высказываний о собственных убеждениях. Перейдем теперь к оператору знания. Для этого оператора обычно принимаются следующие основополагающие постулаты: K1. K p ® p. (Если высказывание известно, то оно истинно; знание высказывания влечет за собой его истинность.) K2. K(р ® q) ® (K р ® K q). (Если известно, что высказывание p влечет за собой высказывание q, а также известно p, то известно и q) K3. K p ® KK p. (Если некто знает какое-то высказывание, то он также знает, что он это знает.) Во многих системах эпистемической логики принимается следующее правило вывода, которому должен подчиняться оператор знания: Если высказывание р является доказанным, то доказанным является и высказывание К р (правило "навешивания" оператора знания). Согласно этому правилу, познающий субъект знает все теоремы логики (логическое всеведение). Это, конечно, довольно сильная идеализация, к тому же небесспорная. Имеется обширная логико-философская литература, посвященая обсуждению этого принципа и рассмотрению различных доводов за и против его принятия. Следующей важной задачей является установление взаимосвязи между операторами знания и убеждений. Эта взаимосвязь, в основном, фиксируется посредством следующего постулата: KB1. K p ® B p. (Если некто знает, что р, то он также считает, что р.) Постулаты К1 и КВ1 отражают то понимание, что необходимыми условиями знания высказывания являются как его истинность, так и убежденность в нем со стороны некоторого субъекта. В некоторых системах эпистемической логики эти условия считаются также и достаточными, в результате чего получаем следующее определение знания: Определение 1. К р Û В р Ù р. (Некто знает, что р, если и только если он убежден, что р и р является истинным.) Несмотря на то, что, как было показано в предыдущем параграфе, с философской точки зрения это определение является явно неполным, его вполне можно использовать для целей логического анализа в качестве рабочего определения. Если же ввести дополнительный "оператор обоснованности" – J p (читается как " р является обоснованным"), то можем сформулировать следующее определение знания как обоснованного истинного убеждения: Определение 2. К р Û В р Ù J p Ù р. Перечисленные постулаты делают возможным формальный анализ понятий знания и убеждения в рамках определенной системы аксиом. Такой анализ осуществляется в ходе доказательства новых теорем. В качестве примера, покажем, как доказывается теорема, выражающая невозможность противоречивости знания: К р ® ~К~ р. В скобках после каждого шага доказательства дается обоснование данного шага. 1. K p ® B p (постулат КВ1) 2. B p ® ~B~ p (постулат В2) 3. K p ® ~B~ p (из 1 и 2 по транзитивности) 4. K~ p ® B~ p (частный случай постулата КВ1) 5. ~B~ p ® ~K~ p (из 4 по контрапозиции) 6. K p ® ~K~ p (из 3 и 5 по транзитивности). То есть, если некто знает, что р, то неверно, что он знает ~ р – нельзя одновременно знать как р, так и ~ р, что и требовалось доказать. Другая интересная теорема, устанавливающая связь между понятиями знания и убеждения, непосредственно следует из постулатов К3 и КВ1: K p ® ВK p. Эта теорема по существу говорит о том, что если мы что-то знаем, то мы обязательно должны быть убеждены в самом факте нашего знания. Философское значение эпистемической логики заключается также в том, что сама постановка вопроса, следует ли принимать в качестве аксиом те или иные эпистемические формулы, способна стимулировать обсуждение соответствующих эпистемологических проблем, в частности проблемы философского обоснования соответствующих эпистемологических принципов. Так например, из вышеприведенных аксиом нельзя вывести следующие формулы: В p ® КВ p и ~В p ® K~В p, которые утверждают, что если мы в чем-то убеждены или не убеждены, то сам факт наличия или отсутствия этого убеждения должен быть нам известен. Можно было бы рассмотреть возможность принятия этих формул в качестве дополнительных аксиом. Это, однако, требует предварительного содержательного оправдания данных принципов.
Дата добавления: 2014-12-29; Просмотров: 431; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |