Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Центральный процессор ЭВМ




Рис. 12. Регистровая структура магазинного типа

Рис. 11. Структурная схема ОЗУ

5.

 

 

Регистр X

ОЗУ

 

 

Дешифратор X

 

...

 

Блок Дш. Рег.

 

элементов Y Y

.

памяти

 

 

...

 

Регистр данных Регистр управления Регистр адреса

 

Шина данных СМ Шина управления СМ Шина адреса СМ

 

По шине управления передается сигнал, определяющий, какую операцию необходимо выполнить.

По шине данных передается информация, записываемая в память или считываемая из нее.

По шине адреса передается адрес участвующих в обмене элементов памяти (поскольку данные передаются машинными словами, а один ЭП может воспринять только один бит информации, блок элементов памяти состоит из n матриц ЭП, где n – количество разрядов в машинном слове). Максимальная емкость памяти определяется количеством линий в шине адреса системной магистрали: если количество линий обозначить m, то емкость памяти (т.е. количество ЭП, имеющих уникальные адреса) определяется как 2m. Так, в IBM PC XT шина адреса СМ содержала 20 линий. Поэтому максимальный объем ОП в этих машинах равен 220 = 1 Мбайт. В IBM PC AT (с микропроцессором i80286) СМ содержала 24 линии, поэтому объем ОП был увеличен до 16 Мбайт. Начиная с МП i80386, шина данных содержит 32 линии. Максимальный объем ОП увеличился до 232 = 4 Гб.

Микросхемы памяти могут строиться на статических (SRAM) и динамических (DRAM) ЭП. В качестве статического ЭП чаще всего выступает статический триггер.
В качестве динамического ЭП может использоваться электрический конденсатор, сформированный внутри кремниевого кристалла.

Статические ЭП способны сохранять свое состояние (0 или 1) неограниченное время (при включенном питании). Динамические ЭП с течением времени теряют записанную в них информацию (например, из-за саморазряда конденсатора), поэтому они нуждаются в периодическом ее восстановлении – в регенерации.

Микросхемы элементов памяти динамических ОЗУ отличаются от аналогичных ЭП статических ОЗУ меньшим числом компонентов в одном элементе памяти, в связи с чем – имеют меньшие размеры и могут быть более плотно упакованы в кристалле. Однако из-за необходимости регенерации информации динамические ОЗУ имеют более сложные схемы управления.

Основными характеристиками ОЗУ являются объем и быстродействие.

В современных ПЭВМ ОЗУ имеет модульную структуру. Увеличение объема ОЗУ обычно связано с установкой дополнительных модулей на 16, 32, 64, 128, 256, 512 Мбайт и 1 Гбайт. Время доступа к модулям DRAM составляет 60-70 нс.

Микросхемы ПЗУ также построены по принципу матричной структуры накопителя. Функции ЭП в них выполняют перемычки в виде проводников, полупроводниковых диодов или транзисторов. В такой матрице наличие перемычки может означать «1», а ее отсутствие – «0». Занесение информации в микросхему ПЗУ называется ее программированием, а устройство, с помощью которого заносится информация, – программатором. Программирование ПЗУ заключается в устранении (прожигании) перемычек по тем адресам, где должен храниться «0». Обычно схемы ПЗУ допускают только одно программирование, но специальные микросхемы – репрограммируемые ПЗУ (РПЗУ) – допускают их многократное стирание и занесение новой информации. Этот вид микросхем относится к энергонезависимым, т.е. может длительное время сохранять информацию при выключенном питании (стирание микросхемы происходит либо за счет подачи специального стирающего напряжения, либо за счет воздействия на кристалл ультрафиолетового излучения, для этого в корпусе микросхемы оставляется прозрачное окно).

Сверхоперативные ЗУ используются для хранения небольших объемов информации и имеют значительно меньшее (в 2-10 раз) время считывания/записи, чем основная память. СОЗУ обычно строятся на регистрах и регистровых структурах.

Регистр представляет собой электронное устройство, способное при включенном питании хранить занесенное в него число неограниченное время. Наибольшее распространение получили регистры на статических триггерах.

По назначению регистры делятся на регистры хранения и регистры сдвига. Информация в регистры может заноситься и считываться либо параллельно, сразу всеми разрядами, либо последовательно, через один из крайних разрядов с последующим сдвигом занесенной информации.

Сдвиг записанной в регистр информации может производиться вправо или влево. Если регистр допускает сдвиг информации в любом направлении, он называется реверсивным.

Регистры могут быть объединены в единую структуру. Возможности такой структуры определяются способом доступа и адресации регистров. Если к любому регистру можно обратиться для записи/чтения по его адресу, такая регистровая структура образует СОЗУ с произвольным доступом.

Безадресные регистровые структуры могут образовывать два вида устройств памяти: магазинного типа и память с выборкой по содержанию (ассоциативные ЗУ).

Память магазинного типа образуется из последовательно соединенных регистров (рис. 12).

Если запись в регистровую структуру (рис. 12а) производится через один регистр, а считывание – через другой, то такая память является аналогом линии задержки и работает по принципу «первым вошел – первым вышел» (FIFO – first input, first output).

Если же запись и чтение осуществляются через один и тот же регистр (рис. 12б), такое устройство называется стековой памятью, работающей по принципу «первым вошел – последним вышел» (FILO – first input, last output).

 

 

 

 
 

 


Регистр 1 Регистр 1

 

 

Регистр 2 Регистр 2

 

.........

Запись Чтение

в стек из стека

 

Регистр К Регистр К

 

 

а б

 

При записи числа в стековую память сначала содержимое стека сдвигается в сторону последнего, К-го регистра (если стек был полностью заполнен, то число из К-го регистра теряется), а затем число заносится в вершину стека – регистр 1. Чтение осуществляется тоже через вершину стека, после того, как число из вершины прочитано, стек сдвигается в сторону регистра 1.

Стековая память получила широкое распространение. Для ее реализации в ЭВМ разработаны специальные микросхемы. Но часто работа стековой памяти эмулируется в основной памяти ЭВМ: с помощью программ операционной системы выделяется часть памяти под стек (в IBM PC для этой цели выделяется 64 Кбайта). Специальный регистр микропроцессора (указатель стека) постоянно хранит адрес ячейки ОП, выполняющей функции вершины стека. Чтение числа всегда производится из вершины стека, после чего указатель стека изменяется и указывает на очередную ячейку стековой памяти (т.е. фактически стек остается неподвижным, а перемещается вершина стека). При записи числа в стек сначала номер ячейки в указателе стека модифицируется так, чтобы он указывал на очередную свободную ячейку, после чего производится запись числа по этому адресу. Такая работа указателя стека позволяет реализовать принцип «первым вошел – последним вышел».

В стек может быть загружен в определенной последовательности ряд данных, которые впоследствии считываются из стека уже в обратном порядке, на этом свойстве построена система арифметических преобразований информации, известная под названием «логики Лукашевича».

Память с выборкой по содержанию является безадресной. Обращение к ней осуществляется по специальной маске, которая содержит поисковый образ. Информация считывается из памяти, если часть ее соответствует поисковому образу, зафиксированному в маске. Например, если в такую память записана информация о людях, содержащая данные о месте жительства (включая город), и необходимо найти сведения о жителях определенного города, то название этого города помещается в маску и дается команда чтение – из памяти выбираются все записи, – относящиеся к заданному городу.

В микропроцессорах ассоциативные ЗУ используются в составе кэш-памяти для хранения адресной части команд и операндов исполняемой программы. При этом нет необходимости обращаться к ОП за следующей командой или требуемым операндом, достаточно поместить в маску необходимый адрес: если искомая информация имеется в СОЗУ, то она будет сразу выдана. Обращение к ОП будет необходимо лишь при отсутствии требуемой информации в СОЗУ. За счет такого использования СОЗУ сокращается число обращений к ОП, а это позволяет экономить время.

Кэш-память может быть размещена в кристалле процессора или выполнена в виде отдельной микросхемы или модуля, содержащего несколько микросхем (внешняя кэш-память).

Встроенная кэш-память (I уровня) в процессорах Pentium имеет объем 16-32 Кбайт. Внешняя кэш-память (II уровня) имеет объем 256 Кбайт-1 Мбайт и работает с 64-битными словами.

 

 

 
 


Основу центрального процессора ПЭВМ составляет микропроцессор (МП) – обрабатывающее устройство, служащее для арифметических и логических преобразований данных, для организации обращения к ОП и ВНУ и для управления ходом вычислительного процесса.

 

В настоящее время существует большое число разновидностей микропроцессоров, различающихся назначением, функциональными возможностями, структурой, исполнением. Наиболее существенными классификационными различиями между ними чаще всего выступают:

– назначение (микропроцессоры для серверов и мощных приложений; МП для персональных компьютеров и т.д.);

– количество разрядов в обрабатываемой информационной единице (8-битные, 16-битные, 32-битные, 64-битные и др.);

– технология изготовления (0.5 мкм – технология; 0.35 мкм; 0.25 мкм; 0.18 мкм; 0.13 мкм; 0.07 мкм и т.д.).

Среди МП для серверов и мощных приложений прочное место завоевали RISC-процессоры (Reduce Instruction Set Computing) с сокращенной системой команд. Система команд таких МП содержит ограниченное число (порядка 50) очень простых команд. За счет этого упрощаются схемы управления микропроцессором и сокращаются его размеры. На кристалле МП (чипе) освобождается место, которое используется для размещения кеш-памяти большого объема. Наличие такой памяти внутри чипа позволяет сократить количество обращений к основной памяти, а это приводит к повышению быстродействия ЭВМ в 2-10 раз, так как обращение к кеш-памяти, расположенной внутри чипа, требует меньших затрат времени. Для повышения производительности RISC-процессоры обычно работают с машинными словами очень большой длины (не менее 64 бит).

К числу RISC-процессоров относятся микропроцессоры «SPARC» и «UltraSPARC» фирмы Sun Microsystems, «Alpha» фирмы Compaq, «MIPS» фирмы Silicon Graphics. Консорциум фирм IBM-Motorola-Apple разрабатывает и выпускает МП «Power PC», или сокращенно «PPC». Фирма Intel (INTegrated ELectronics) совместно с Hewlett Packard разрабатывает RISC-процессор «P7» с тактовой частотой более 900 МГц, обеспечивающий совместимость с 32-битными МП. Прогнозируется, что два из этих микропроцессоров (PPC и P7) в модифицированном виде будут использоваться до 2025 года.

Микропроцессоры для персональных компьютеров обычно относятся к CISC-процессорам (Complete Instruction Set Computing) с полной системой команд, насчитывающей до 250 единиц. К их числу относятся 8-битные микропроцессоры i8080, i8085
(с буквы i начинаются названия МП, выпускаемых фирмой Intel), Z80 (с буквы Z начинаются названия МП фирмы Zilog) и др. 16-битные микропроцессоры i8086, i8088; 32-битные – i80386, i80486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium IV, которые совместимы по командам и форматам данных снизу вверх. Эти микропроцессоры используются в различных модификациях IBM PC.

Два из этих микропроцессоров – i8086 и i8088 являются родоначальниками серии микропроцессоров, получивших сокращенное наименование «x86» (все последующие типы МП основываются на них и лишь развивают их архитектуру). По назначению и функциональным возможностям эти два микропроцессора одинаковы. Различаются они только разрядностью шины данных системной магистрали: МП i8086 имеет 16-битную шину данных, а i8088 – 8-битную. В связи с этим выборка команд и операндов из основной памяти производится за разное число машинных циклов. С точки зрения функциональных возможностей существенного значения эти различия не имеют, поэтому и упоминают о них, как правило, вместе: 8086/8088.

МП 8086/8088 имеет базовую систему команд. В следующей модификации МП фирмы Intel – 80186 реализована расширенная система команд. Расширение системы команд продолжается во всех новых моделях, но кроме этого в каждой новой модели вводятся дополнительные архитектурные решения: в 80286 введен встроенный блок управления ОП, работающей в виртуальном режиме (что позволило увеличить предельно допустимый объем виртуальной памяти до 4 Гбайт при 16 Мбайтах физической) и блоки, позволяющие реализовать мультизадачность: блок защиты ОП и блок проверки уровня привилегий, присваиваемых каждой задаче. Кроме того, во всех последующих моделях вводятся и совершенствуются средства, позволяющие повысить производительность МП: совершенствуются конвейер команд и встроенный блок управления ОП, вводится микропрограммное управление операциями, прогнозирование переходов по командам условной передачи управления, скалярная архитектура ЦП (арифметический конвейер) и мультискалярная архитектура (несколько параллельно работающих арифметических конвейеров, одновременно выполняющих несколько машинных операций, благодаря чему появляется возможность за один такт МП выполнять более одной машинной операции). Начиная с 80486, в кристалле МП размещается арифметический сопроцессор для операций с плавающей точкой.

Все эти усовершенствования позволяют сделать персональную ЭВМ IBM PC мультипрограммной, многопользовательской (МП 80286 позволял работать с 10 терминалами; 80386 – с 60) и многозадачной. С помощью операционной системы стало возможным реализовать работу в режиме SVM (системы виртуальных машин), т.е. на одной ПЭВМ реализовать множество независимых виртуальных машин (МП 80386 позволял в этом режиме реализовать работу до 60 пользователей, каждому из которых предоставлялась отдельная виртуальная ПЭВМ IBM PC на МП 8086).

Начиная с МП i80586, цифровая характеристика микропроцессора заменена названием. Этот микропроцессор получил название «Pentium».

Тактовая частота микропроцессора Pentium быстро выросла с 60 МГц до 200 МГц. В этот микропроцессор встроено два внутренних кэша: кэш команд и кэш данных (каждый по 8 Кбайт), в нем реализовано «интеллектуальное» управление потреблением мощности: при работе с малой нагрузкой МП автоматически переключается в режим малого потребления электроэнергии; если ЭВМ в течение большого промежутка времени не используется совсем, МП переходит в «режим покоя». Экономия электроэнергии приводит к снижению нагрева микропроцессора, а следовательно – к увеличению срока его службы.

Разработан новый тип микропроцессора – Pentium MMX (MultiMedia Extention), в котором реализована архитектура вычислительных систем класса SIMD, введено 57 новых команд, необходимых для обработки аудио, видео и телекоммуникационной информации.

Следующая разновидность микропроцессоров – Pentium Pro – имела в том же корпусе кэш-память второго уровня объемом 256-512 Кбайт. Кроме того, в этом микропроцессоре система команд х86 транслировалась в RISC-команды (три х86-команды преобразовывались в 12 RISC-команд), исполнявшиеся параллельно работающими блоками вычислений.

В последующих разновидностях микропроцессоров (Pentium II, Pentium III, Pentium IV) вводится ряд усовершенствований, позволяющих повысить тактовую частоту, емкость сверхоперативной памяти, быстродействие и надежность функциональных блоков. Тактовая частота, например, быстро проходила ряд: 533, 566, 600, 633, 667, 700, 733, 766, 800, 850, 866 МГц, 1, 1.13, 1.4, 1.5 ГГц и выше. Ведутся работы по освоению технологии SiGe, позволяющей освоить выпуск микросхем, работающих в диапазоне частот 20-50 ГГц.

Объем кэша 1 уровня вырос до 16 + 16 = 32 Кбайт. Начиная с Pentium Pro, все последующие модели обеспечивают выполнение команд с изменением последовательности, суть которой заключается в том, что мультискалярная архитектура (т.е. наличие в составе микропроцессора нескольких параллельно работающих арифметических конвейеров) допускает, что при параллельном выполнении команд программы один из конвейеров может выполнить свою работу раньше, чем ее закончат другие – и процесс вычислений вынужден останавливать конвейер в ожидании получения необходимых результатов. Такие ситуации нарушают естественную последовательность выполнения команд программы.

Ведущие фирмы – производители ЭВМ с целью совершенствования выпускаемой ими продукции активно ведут научные исследования, о чем свидетельствуют данные, приведенные в таблице 3.

Таблица 3.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 756; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.031 сек.