Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Информационная безопасность в компьютерных сетях




Рис. 29. Классификация ППД нижнего уровня

 

Получил распространение способ организации запроса – циклический опрос, т. е. последовательное обращение к каждому вторичному узлу в порядке очередности, определяемом списком опроса. Цикл завершается после опроса всех вторичных узлов из списка. Для сокращения потерь времени, связанных с опросом неактивных вторичных узлов, применяются специальные варианты процедуры опроса: наиболее активные узлы в течение одного цикла опрашиваются несколько раз; наименее активные узлы опрашиваются один раз в течение нескольких циклов; частота опроса отдельных узлов меняется динамически в соответствии с изменением их активности. В сетях с многоточечными линиями применяется также опрос по принципу «готов-вперед». В каждой многоточечной линии опрос начинается с самого удаленного вторичного узла к другому, пока не достигнет узла, ближайшего к опрашивающему органу. Реализация такого принципа позволяет сократить время на распространение сигнала опроса от первичного узла к вторичным.

Системы с опросом отличаются простотой реализации протокола и невысокой стоимостью используемого оборудования.

Недостатки таких систем:

· неэффективное использование дорогостоящих ресурсов канала, связанное с передачей служебной информации (сигналов опроса, сигналов ответной реакции);

· простаивание вторичного узла, имеющего готовые для передачи данные, в ожидании поступления сигнала «опрос» (этот недостаток особенно ощущается при большом количестве вторичных узлов);

· наличие узкого места по надежности (отказ первичного узла приводит к отказу всей сети) и по пропускной способности, так как обмен данными между вторичными узлами осуществляется только через первичный узел.

 

 

Простейшей модификацией ППД типа первичный/вторичные с опросом является протокол, называемый «опрос с остановкой и ожиданием». При его использовании узел после передачи кадра ожидает от адресата подтверждения в правильности его пересылки, что сопряжено с дополнительными затратами времени.

 

Другой пример протоколов типа первичный/вторичные с опросом – «непрерывный автоматический запрос на повторение передачи данных». Применяется в дуплексных системах (в системах передачи данных с решающей обратной связью), допускающих одновременную передачу данных в обоих направлениях между взаимодействующими узлами.

 

В системах с таким протоколом (он называется также протоколом ARQ) узел связи может автоматически запрашивать другой узел и повторно производить передачу данных. На передающей и принимающей станциях устанавливаются так называемые передающие и принимающие окна и выделяется время и необходимые ресурсы на непрерывную передачу (прием) фиксированного числа кадров. Кадры, принадлежащие данному окну, передаются без периодических подтверждений со стороны адресата о приеме очередного кадра. Подтверждение передается после получения всех кадров окна, что обеспечивает экономию времени на передачу фиксированного объема информации по сравнению с предыдущим протоколом. Однако приемник должен иметь достаточный объем зарезервированной памяти для обработки непрерывно поступающего трафика.

В системах ARQ важное значение имеет размер окна (количество кадров в окне). Чем больше окно, тем большее число кадров может быть передано без ответной реакции со стороны приемника и, следовательно, тем большая экономия достигается за счет сокращения служебной информации. Но увеличение размера окна сопровождается выделением больших ресурсов и буферной памяти для обработки поступающих сообщений. Кроме того, это негативно отражается на эффективности реализуемых способов защиты от ошибок. В настоящее время в сетях с протоколом ARQ предусматриваются семикадровые окна. Концепция скользящих окон, реализованная в этом протоколе, достаточно проста. Сложность заключается лишь в том, что первичный узел, связанный с десятками и даже сотнями вторичных узлов, должен поддерживать окно с каждым из них, обеспечивая управление потоками данных и эффективность их передачи.

Протоколы типа первичный/вторичные без опроса также получили определенное распространение. К ним относятся:

· запрос передачи/разрешение передачи;

· разрешить/запретить передачу;

· множественный доступ с временным разделением.

Общим для этих протоколов является то, что инициатива в подаче запроса на обслуживание принадлежит, как правило, вторичному органу, причем запрос подается первичному органу, если действительно имеется необходимость в передаче или в получении данных от другого органа. Эффективность протоколов по сравнению с ППД с опросом будет тем выше, чем в большей степени вторичные органы отличаются друг от друга по своей активности, т. е. по частоте подачи запросов на обслуживание. Первые два протокола без опроса реализуют селективные методы доступа к передающей среде, а третий – методы, основанные на резервировании времени.

Протокол типа запрос передачи/разрешение передачи применяется в полудуплексных каналах связи ЛКС, так как взаимосвязан с распространенным короткодистанционным физическим интерфейсом RS-232-C. Организация передачи данных между вторичным и первичным органами производится в такой последовательности: выдача вторичным органом запроса на передачу – выдача первичным органом сигнала разрешения на передачу вторичным органом – передача данных от вторичного органа к первичному ® сброс сигнала первичным органом по завершении передачи.

Протокол типа разрешить/запретить передачу часто используется периферийными устройствами (принтерами, графопостроителями) для управления входящим в них трафиком. Первичной орган (обычно компьютер) посылает данные в периферийный узел (вторичный орган), скорость работы которого существенно меньше скорости работы компьютера и скорости передачи данных каналом. В связи с этим возможно переполнение буферного ЗУ периферийного узла. Для предотвращения переполнения периферийный узел посылает к компьютеру сигнал «передача выключена», получив который компьютер прекращает передачу и сохраняет данные до тех пор, пока не получит сигнал «разрешить передачу», означающий, что буферное ЗУ освободилось и периферийный узел готов принять новые данные.

Множественный доступ с временным разделением используется в спутниковых сетях связи. Первичный орган (главная, эталонная станция сети) принимает запросы от вторичных (подчиненных) станций на предоставление канала связи и, реализуя ту или иную дисциплину обслуживания запросов, определяет, какие именно станции и когда могут использовать канал в течение заданного промежутка времени, т. е. предоставляет каждой станции слот. Получив слот, вторичная станция осуществляет временную подстройку, чтобы произвести передачу данных за заданный слот.

Одноранговые протоколы разделяются на две группы: без приоритетов (в неприоритетных системах) и с учетом приоритетов (в приоритетных системах).

Мультиплексная передача с временным разделением – наиболее простая равноранговая неприоритетная система, где реализуются методы доступа к передающей среде, основанные на резервировании времени. Используется жесткое расписание работы абонентов: каждой станции выделяется интервал времени (слот) использования канала связи, и все интервалы распределяются между станциями поровну.

Недостатки такого протокола:

· возможность неполного использования канала, когда станция, получив слот, не может полностью загрузить канал из-за отсутствия необходимого объема данных для передачи;

· нежелательные задержки в передаче данных, когда станция, имеющая важную и срочную информацию, вынуждена ждать своего слота или когда выделенного слота недостаточно для передачи подготовленных данных и необходимо ждать следующего слота.

Множественный доступ с прослушиванием несущей частоты и разрешением коллизий, английская аббревиатура которого CSMA/CD – Caner Sense Maltiple Access with Collection Detection. Это наиболее распространенный недерминированный метод случайного доступа к передающей среде.

Работа сети под управлением такого протокола осуществляется следующим образом. Все станции сети, будучи равноправными, перед началом передачи работают в режиме прослушивания канала. Если канал свободен, станция начинает передачу; если занят, станция ожидает завершения передачи. Сеть является равноранговой, поэтому в результате соперничества за канал могут возникнуть коллизии: станция В может передать свой кадр, не зная, что станция А уже захватила канал, поскольку от станции А к станции В сигнал распространяется за конечное время. В результате станция В, начав передачу, вошла в конфликт со станцией А.

 

Возникает коллизия, которая представляет собой явление взаимного искажения кадров, отправленных почти одновременно несколькими станциями сети. Результатом коллизии является «затор» или «пробка» – короткая последовательность бит с хаотическим распределением единиц и нулей.

 

«Пробка» распространятся по всей сети, ее получают все станции, в том числе и те, которые только что отправили в канал свои кадры. Для них это сигнал («пробка» во много раз короче кадра), что отправленные кадры потеряны, и необходима их повторная
передача.

Важным аспектом коллизии является «окно коллизии» – интервал времени, необходимый для распространения «пробки» по каналу и обнаружения ее любой станцией сети. В наихудших для одноканальной сети условиях время, необходимое для обнаружения коллизии, в два раза больше задержки распространения сигнала в канале, так как образовавшаяся «пробка» должна достигнуть всех станций сети. Чтобы окно коллизии было меньше, такой способ доступа целесообразно применять в сетях с небольшими расстояниями между станциями, т. е. в локальных сетях (вероятность появления коллизий возрастает с увеличением этого расстояния).

Коллизия – это нежелательное явление, приводящее к ошибкам в работе сети и поглощающее много времени для ее обнаружения и ликвидации последствий. Поэтому необходимо реализовать некоторый алгоритм, позволяющий либо избежать коллизий, либо минимизировать их последствия. В сети CSMA/CD эта проблема решается на уровне управления доступом к среде. При обработке коллизии компонент управления доступом к среде передающей станции выполняет две функции:

· усиливает эффект коллизии путем передачи специальной последовательности битов с целью удлинения «пробки» так, чтобы ее смогли заметить все другие передающие станции, вовлеченные в коллизию («пробка» должна быть по меньшей мере длиной в 32 бита, но не более 48 бит). Ограничение длины «пробки» сверху необходимо для того, чтобы станции ошибочно не приняли ее за действительный кадр. Любой кадр длиной менее 64 байт считается фрагментом испорченного сообщения и игнорируется принимающими станциями сети;

· после выполнения первой функции прекращает передачу и планирует ее на более позднее время, определяемое на основе случайного выбора интервала ожидания перед повторной выдачей испорченного кадра.

Сети CSMA/CD реализуются достаточно просто и при малой загрузке обеспечивают быстрый доступ к передающей среде, а также позволяют легко подключать и отключить станции. Они обладают высокой живучестью, поскольку большинство ошибочных и неблагоприятных условий приводит либо к молчанию, либо к конфликту (а обе эти ситуации поддаются обработке) и, кроме того, нет необходимости в центральном управляющем органе сети. Их основной недостаток: при больших нагрузках время ожидания доступа к передающей среде становится большим и меняется непредсказуемо, следовательно не гарантируется обеспечение предельно допустимого времени доставки кадра. Такие системы доступа применяются в незагруженных локальных сетях с небольшим числом абонентских станций (с увеличением числа станций увеличивается вероятность возникновения коллизий).

Метод передачи маркера широко используется в неприоритетных и приоритетных сетях с магистральной (шинной), звездообразной и кольцевой топологией. Он относится к классу селективных методов: право на передачу данных станции получают в определенном порядке, задаваемом с помощью маркера, который представляет собой уникальную последовательность бит информации (уникальный кадр). Магистральные сети, использующие этот метод, называются сетями типа «маркерная шина», а кольцевые сети – сетями типа «маркерное кольцо».

Протокол типа «маркерная шина» (рис. 30) применяется в локальных сетях с шинной или звездообразной топологией. Право пользования каналом передается организованным путем. Маркер содержит адресное поле, где записывается адрес станции, которой предоставляется право доступа в канал. Станция, получив маркер со своим адресом, имеет исключительное право на передачу данных (кадра) по физическому каналу. Вслед за своим кадром станция отправляет маркер другой станции, которая является очередной по установленному порядку владения правом на передачу (для этого в адресном поле маркера стирается свой адрес и вместо него записывается адрес очередной станции, так как каждой станции известен идентификатор очередной станции). Станции получают маркер в циклической последовательности, при этом в физическом канале формируется так называемое логическое кольцо. Все станции «слушают» канал, но захватить его для передачи данных может только та станция, которая указана в адресном поле маркера. Работая в режиме прослушивания канала, принять переданный кадр может станция, адрес которой указан в поле адреса получателя этого кадра.

 

 

25.1.1.1.1.4 Рис. 30. Протокол типа «маркерная шина»

 

 

S– адрес следующей станции.

 

В сетях типа «маркерная шина», помимо передачи маркера, решается проблема потери маркера из-за повреждения одного из узлов сети и реконфигурации логического кольца, когда в кольцо добавляется или из него удаляется один из узлов.

Преимущества таких сетей:

· не требуется физического упорядочения подключенных к шине станций, так как с помощью механизма логической конфигурации можно обеспечить любой порядок передачи маркера;

· имеется возможность использования в загруженных сетях;

· возможна передача кадров произвольной длины.

Протокол типа «маркерное кольцо» применяется в локальных сетях с кольцевой топологией, где сигналы распространяются через однонаправленные двухточечные пути между узлами. Узлы и однонаправленные звенья соединяются последовательно, образуя кольцо (рис. 31). В отличие от сетей с шинной типологией, где узлы действуют только как передатчики или приемники и отказ узла или удаление его из сети не влияет на передачу сигнала к другим узлам, здесь все узлы играют активную роль, участвуя в ретрансляции, усилении, анализе и модификации приходящих сигналов.

 

 

Рис. 31. Протокол типа «маркерное кольцо»:

а – маркер свободен; б – маркер занят

 

 

 


К

М

 

а б

М – маркер; К – кадр;

КИУ – кольцевое интерфейсное устройство

 

В качестве маркера также используется уникальная последовательность битов, но он не имеет адреса. Маркер снабжается полем занятости, в котором записывается один из кодов, обозначающих его состояние – свободное или занятое. Если ни один из узлов сети не имеет данных для передачи, свободный маркер циркулирует по кольцу, совершая однонаправленное (против часовой стрелки) перемещение. В каждом узле маркер задерживается на время, необходимое для его приема, анализа с целью установления занятости и ретрансляции. В выполнении этих функций задействованы кольцевые интерфейсные устройства (КИУ).

Свободный маркер означает, что кольцевой канал свободен и что любая станция, имеющая данные для передачи, может его использовать. Получив свободный маркер, станция с готовым для передачи кадром, меняет состояние маркера на «занятый», передает его дальше по кольцу и добавляет к нему кадр. Занятый маркер вместе с кадром совершает полный оборот по кольцу и возвращается к станции-отправителю. По пути станция-получатель, удостоверившись по адресной части кадра, что именно ей он адресован, снимает копию с кадра. Изменить состояние маркера снова на свободное может только тот узел, который изменил его на занятое. По возвращении занятого маркера с кадром данных к станции-отправителю кадр удаляется из кольца, а состояние маркера меняется на свободное, после чего любой узел может захватить маркер и начать передачу данных. С целью предотвращения монополизации канала станция-отправитель не может повторно использовать возвращенный к ней маркер для передачи другого кадра данных. Если после передачи свободного маркера в кольцо он, совершив полный оборот, возвращается к станции-отправителю в таком же состоянии (это означает, что все другие станции сети не нуждаются в передаче данных), станция может совершить передачу другого кадра.

В кольцевой сети с передачей маркера также решается проблема потери маркера в результате ошибок при передаче или при сбоях в узле. Отсутствие передач в сети означает потерю маркера. Функции восстановления работы сети в таких случаях выполняет сетевой мониторный узел.

Можно указать на следующие преимущества протокола типа «маркерное кольцо»:

· протокол может быть использован в загруженных сетях;

· имеется принципиальная возможность (и в некоторых сетях она реализована) осуществлять одновременную передачу несколькими станциями сети;

· имеется возможность проверки ошибок при передаче данных: станция-отправитель, получив свой кадр от станции-получателя, сверяет его с исходным вариантом кадра. В случае наличия ошибки, кадр передается повторно.

Недостатки такого протокола:

· протокол целесообразно использовать только в локальных сетях с относительно небольшим количеством станций, так как в противном случае время на передачу сообщения, состоящего из многих кадров, может оказаться неприемлемо большим;

· невозможность передачи кадров произвольной длины;

· в простейшем (описанном выше) исполнении не предусматривается использование приоритетов, вследствие чего станция, имеющая для передачи важную информацию, вынуждена ждать освобождения маркера, что сопряжено с опасностью несвоевременной доставки данных адресату.

Приоритетные системы однорангового типа представлены тремя подходами, реализованными в приоритетных слотовых системах (в системах с приоритетами и временным квантованием), в системах с контролем несущей частоты без коллизий и в системах с передачей маркера с приоритетами.

Приоритетные слотовые системы подобны бесприоритетным системам с мультиплексной передачей и временным разделением, однако использование канала производится на приоритетной основе. Критериями для установления приоритетов могут быть: предшествующее владение слотом; объем передаваемых данных (чем он меньше, тем выше приоритет) и др. Здесь возможно децентрализованное обслуживание, но для этого необходима загрузка параметров приоритетов в память каждой станции. Недостатки системы: длина данных строго ограничена (в течение заданного слота они должны быть переданы); существует возможность простоя канала, присущая всем протоколам, которые реализуют методы доступа, основанные на резервировании времени.

В системах с контролем несущей частоты без коллизий используется специальная логика для предотвращения коллизий. Каждая станция сети имеет дополнительное устройство – таймер или арбитр. Оно определяет, когда станция может вести передачу без опасности появления коллизий. Главная станция для управления использованием канала не предусматривается. Установка времени на таймере, по истечении которого станция может вести передачу данных, осуществляется на приоритетной основе. Для станции с наивысшим приоритетом переполнение таймера наступает раньше, однако если она не намерена вести передачу, канал будет находиться в состоянии покоя, т. е. свободен, и тогда следующая по приоритету станция может захватить канал. Такие системы могут использоваться в более загруженных и протяженных сетях. Уменьшается также время простоя канала. Все это достигается за счет усложнения оборудования системы.

Приоритетные системы с передачей маркера применяются обычно в локальных сетях с кольцевой топологией.

Для каждой станции сети устанавливается свой уровень приоритета, причем чем выше уровень, тем меньше его номер. Назначение приоритетной схемы предусматривает цель: дать возможность каждой станции зарезервировать использование канала для следующей передачи. Каждая станция анализирует перемещающийся по кольцу маркер, который содержит поле резервирования (ПР). Если собственный приоритет выше, чем значение приоритета в ПР маркера, станция увеличивает значение приоритета в ПР до своего уровня, резервируя тем самым маркер на следующий цикл. Если в данном цикле какая-то другая станция не увеличит еще больше значение уровня приоритета в ПР, этой станции разрешается использовать маркер и канал во время следующего цикла передачи по кольцу (за время цикла маркер совершает полный оборот по кольцу). Для того чтобы запросы на обслуживание со стороны станций с низким приоритетом не были потеряны, станция, захватившая маркер, должна в своей памяти запомнить предыдущее значение уровня приоритета в поле резервирования. После «высвобождения» маркера, когда он завершит полный оборот по кольцу, станция восстанавливает в ПР предыдущий запрос к сети, имеющий более низкий приоритет.

Такой протокол более приемлем для обслуживания запросов, существенно отличающихся по степени их важности и срочности. Однако его применение требует значительного усложнения процедуры обслуживания запросов.

Информационная безопасность компьютерной сети (КС) – это ее свойство противодействовать попыткам нанесения ущерба владельцам и пользователям сети при различных умышленных и неумышленных воздействиях на нее. Иначе говоря, это защищенность сети от случайного или преднамеренного вмешательства в нормальный процесс ее функционирования, а также от попыток хищения, модификации или разрушения циркулирующей в сети информации.

 

Определены [16] три базовых принципа информационной безопасности, которая должна обеспечивать:

· конфиденциальность информации, т. е. ее свойство быть известной только допущенным (авторизованным) субъектам сети (пользователям, программам, процессам);

· целостность данных (ресурса) сети, т. е. свойство данных быть в семантическом смысле неизменными при функционировании сети, что достигается защитой данных от сбоев и несанкционированного доступа к ним;

· доступность информации в любое время для всех авторизованных пользователей.

Различают внешнюю и внутреннюю безопасность КС. Предметом внешней безопасности является обеспечение защиты КС от проникновения злоумышленников извне с целью хищения, доступа к носителям информации, вывода сети из строя, а также защиты от стихийных бедствий. Внутренняя безопасность включает обеспечение надежной работы сети, целостности ее программ и данных.

В рамках комплексного рассмотрения вопросов обеспечения информационной безопасности КС различают угрозы безопасности, службы безопасности и механизмы реализации функций служб безопасности.

Классификация угроз информационной безопасности КС. Ниже приводится классификация преднамеренных угроз безопасности КС, причем выделяются только основные типы угроз. Под угрозой безопасности понимается потенциально возможное воздействие на КС, прямо или косвенно наносящее урон владельцам или пользователям сети. Реализация угрозы называется атакой.

Угрозы можно классифицировать по следующим признакам [8]:

1. По цели реализации:

· нарушение целостности информации, что может привести к утрате или обесцениванию информации;

· нарушение конфиденциальности информации (использование ценной информации другими лицами наносит значительный ущерб интересам ее владельцев);

· частичное или полное нарушение работоспособности (доступности) КС.

2. По принципу воздействия на сеть:

· с использованием доступа субъекта КС (пользователя, процесса) к объекту (файлу данных, каналу связи). Доступ – это взаимодействие между субъектом и объектом (выполнение первым некоторой операции над вторым), приводящее к возникновению информационного потока от второго к первому;

· с использованием скрытых каналов, т. е. путей передачи информации, позволяющим взаимодействующим процессам (субъектам) обмениваться информацией таким способом, который нарушает системную политику безопасности.

3. По характеру воздействия на сеть:

· активное воздействие, связанное с выполнением нарушителем каких-либо действий: доступ к определенным наборам данных, программам, вскрытие пароля и т. д. Такое воздействие может осуществляться либо с использованием доступа, либо как с использованием доступа, так и с использованием скрытых каналов. Оно ведет к изменению состояния сети;

· пассивное воздействие, осуществляемое путем наблюдения каких-либо побочных эффектов (например, от работы программы) и их анализа. Пассивное воздействие всегда связано только с нарушением конфиденциальности информации в КС, так как при нем никаких действий с субъектами и объектами не производится. Оно не ведет к изменению состояния системы.

В свою очередь, активное преднамеренное воздействие может быть:

· кратковременным, свидетельствующим о случайности или нежелании злоумышленника привлечь к себе внимание (оно менее опасно, но зато имеет больше шансов остаться незамеченным), или долговременным, связанным с устойчивой заинтересованностью в чужом информационном пространстве с целью изучения его структуры и содержания;

· неразрушающим, когда сеть продолжает функционировать нормально, так как в результате такого воздействия не пострадали ни программы, ни данные, зато возможно хищение информации и нарушение ее конфиденциальности. Если оно не случайное, то является весьма опасным и свидетельствует о намерении злоумышленника использовать в дальнейшем найденный канал доступа к чужой информации;

· разрушающим, когда в результате воздействия на информационную среду внесены какие-либо изменения в программы и/или данные, что сказывается на работе сети. Его последствия при надлежащем ведении архивов могут быть сравнительно легко устранены;

· разовым или многократным, что свидетельствует о серьезности намерений злоумышленника и требует решительных ответных действий;

· зарегистрированным администратором сети при проведении периодического анализа регистрационных данных, свидетельствует о необходимости совершенствования или модификации системы защиты;

· незарегистрированным администратором сети.

4. По способу активного воздействия на объект атаки:

· непосредственное воздействие, например, непосредственный доступ к файлам данных, программам, каналу связи и т. д. С помощью средств контроля доступа такое действие обычно легко предотвращается;

· воздействие на систему разрешений (в том числе захват привилегий). Здесь несанкционированные действия осуществляются относительно прав на объект атаки, а сам доступ к объекту выполняется потом законным образом;

· опосредованное воздействие (через других пользователей), например, когда злоумышленник каким-то образом присваивает себе полномочия авторизованного пользователя, выдавая себя за него, или путем использования вируса, когда вирус выполняет необходимые действия и сообщает о результате тому, кто его внедрил. Этот способ особенно опасен. Требуется постоянный контроль как со стороны администраторов и операторов за работой сети в целом, так и со стороны пользователей за своими наборами данных.

5. По используемым средствам атаки:

· с использованием злоумышленником стандартного программного обеспечения. В этом случае результаты воздействия обычно предсказуемы, так как большинство стандартных программ хорошо изучены;

· с использованием специально разработанных программ, что связано с большими трудностями, но может быть более опасным для сети.

6. По состоянию объекта атаки:

· воздействие на объект атаки, когда в момент атаки он находится в состоянии хранения информации (на диске, магнитной ленте, в оперативной памяти). В этом случае воздействие на объект обычно осуществляется с использованием несанкционированного доступа;

· воздействие на объект, когда осуществляется передача информации по линии связи между узлами сети или внутри узла. При таком состоянии объекта воздействие на него предполагает либо доступ к фрагментам передаваемой информации, либо прослушивание с использованием скрытых каналов;

· воздействие на объект, когда он находится в состоянии обработки информации. Здесь объектом атаки является процесс пользователя.

26. Приведенная классификация свидетельствует о сложности определения возможных угроз и способах их реализации. Отсюда вывод: не существует универсального способа защиты, который предотвратил бы любую угрозу. Необходимо объединение различных мер защиты для обеспечения информационной безопасности всей сети в целом.

Кроме перечисленных угроз информационной безопасности следует добавить следующие угрозы:

· несанкционированный обмен информацией между пользователями, что может привести к получению одним из них не предназначенных ему сведений;

· отказ от информации, т. е. непризнание получателем (отправителем) этой информации факта ее получения (отправления), что может привести к различным злоупотреблениям;

· отказ в обслуживании, который может сопровождаться тяжелыми последствиями для пользователя, обратившегося с запросом на предоставление сетевых услуг.

27. В случае преднамеренного проникновения в сеть различают следующие виды воздействия на информацию [7; 8]:

· уничтожение, т. е. физическое удаление информации с носителей информации (выявляется при первой же попытке обращения к этой информации, а все потери легко восстанавливаются при налаженной системе резервирования и архивации);

· искажение – нарушение логики работы программ или связей в структурированных данных, не вызывающих отказа в их работе или использовании (поэтому это один из опасных видов воздействия, так как его нельзя обнаружить);

· разрушение – нарушение целостности программ и структуры данных, вызывающих невозможность их использования: программы не запускаются, а при обращении к структурированным данным нередко происходит сбой;

· подмена, т. е. замена имеющихся программ или данных другими под тем же именем и так, что внешне это не проявляется. Это также опасный вид воздействия, надежным способом защиты от него является побитовое сравнение с эталонной версией программы;

· копирование, т. е. получение копии программ или данных на другом компьютере. Это воздействие наносит наибольший ущерб в случаях промышленного шпионажа, хотя и не угрожает нормальному функционированию сети;

· добавление новых компонентов, т. е. запись в память компьютера других данных или программ, ранее в ней отсутствовавших. Это опасно, так как функциональное назначение добавляемых компонентов неизвестно;

· заражение вирусом – это такое однократное воздействие на программы или данные, при котором они изменяются и, кроме того, при обращении к ним вызываются подобные изменения в других, как правило, аналогичных компонентах: происходит «цепная реакция», распространение вируса в компьютере или локальной сети.

Величина наносимого ущерба определяется видом несанкционированного воздействия и тем, какой именно объект информационных ресурсов ему подвергся.

Возможными основными объектами воздействия могут быть:

· сетевые операционные системы (СОС) и ОС компьютеров конечных пользователей (в настоящее время они сертифицированы на определенный класс защиты, предусматривающий требование защиты самой себя от изменений);

· служебные, регистрационные таблицы и файлы обслуживания сети (это файлы паролей, прав доступа пользователей к ресурсам, ограничения во времени и функциям и и.д.), программы и таблицы шифровки информации;

· специальные таблицы и файлы доступа к данным на компьютерах конечных пользователей (пароли файлов, или архивов, индивидуальные таблицы шифровки/дешифровки данных, таблицы ключей и т. д.);

· прикладные программы на компьютерах сети и их настроечные таблицы;

· информационные файлы компьютеров сети, базы данных, базы знаний, текстовые документы, электронная почта и т. д.;

· параметры функционирования сети – ее производительность, пропускная способность, временные показатели обслуживания пользователей. Признаками возможного несанкционированного воздействия на сеть, сопровождаемого ухудшением этих параметров, являются: замедление обмена информацией в сети, возникновение необычно больших очередей обслуживания запросов пользователей, резкое увеличение трафика в сети или явно преобладающее время загрузки процессора сервера каким-либо отдельным процессором. Все эти признаки могут быть выявлены и обслужены только при четко отлаженном аудите и текущем мониторинге работы сети.

Основными источниками преднамеренного проникновения в сеть являются [7; 8]:

· хакеры (взломщики сетей), в действиях которых почти всегда есть состав преступления. Наиболее опасны сформировавшиеся и хорошо организованные виртуальные группы хакеров;

· уволенные или обиженные сотрудники сети. Они представляют особую опасность и способны нанести существенный ущерб (особенно если речь идет об администраторах сети), так как обладают знаниями сети и принципами защиты информации и по долгу службы имеют доступ к программам сниффинга (перехвата паролей и имен пользователей в сети, ключей, пакетов и т. д.);

· профессионалы-специалисты по сетям, посвятившие себя промышленному шпионажу;

· конкуренты, степень опасности которых зависит от ценности информации, к которой осуществляется несанкционированный доступ, и от уровня их профессионализма.

Нейтрализация угроз безопасности осуществляется службами безопасности (СБ) сети и механизмами реализации функций этих служб.

Документами Международной организации стандартизации (МОС) определены следующие службы безопасности.

1. Аутентификация (подтверждение подлинности) – обеспечивает подтверждение или опровержение того, что объект, предлагающий себя в качестве отправителя сообщения (источника данных), является именно таковым как на этапе установления связи между абонентами, так и на этапе передачи сообщения.

2. Обеспечение целостности передаваемых данных – осуществляет выявление искажений в передаваемых данных, вставок, повторов, уничтожение данных. Эта служба имеет модификации и отличия в зависимости от того, в каких сетях (виртуальных или дейтаграммных, об этих сетях см. п. 4.8) она применяется, какие действия выполняются при обнаружении аномальных ситуаций (с восстановлением данных или без восстановления), каков охват передаваемых данных (сообщение или дейтаграмма в целом либо их части, называемые выборочными полями).

3. Засекречивание данных – обеспечивает секретность передаваемых данных: в виртуальных сетях – всего передаваемого сообщения или только его выборочных полей, в дейтаграммных – каждой дейтаграммы или только отдельных ее элементов. Служба засекречивания потока данных (трафика), являющаяся общей для виртуальных и дейтаграммных сетей, предотвращает возможность получения сведений об абонентах сети и характере использования сети.

4. Контроль доступа – обеспечивает нейтрализацию попыток несанкционированного использования общесетевых ресурсов.

5. Защита от отказов – нейтрализует угрозы отказов от информации со стороны ее отправителя и/или получателя.

Первые три службы характеризуются различиями для виртуальных и дейтаграммных сетей, а последние две службы инвариантны по отношению к этим сетям.

Механизмы реализации функций указанных СБ представлены соответствующими, преимущественно программными средствами. Выделяются следующие механизмы: шифрование, цифровая подпись, контроль доступа, обеспечение целостности данных, обеспечение аутентификации, подстановка трафика, управление маршрутизацией, арбитраж. Некоторые из них используются для реализации не одной, а нескольких СБ. Это относится к шифрованию, цифровой подписи, обеспечению целостности данных, управлению маршрутизацией.

Использование механизмов шифрования связано с необходимостью специальной службы генерации ключей и их распределения между абонентами сети.

Механизмы цифровой подписи основываются на алгоритмах асимметричного шифрования. Они включают процедуры формирования подписи отправителем и ее опознавание (верификацию) получателем.

Механизмы контроля доступа, реализующие функции одноименной СБ, отличаются многообразием. Они осуществляют проверку полномочий пользователей и программ на доступ к ресурсам сети.

Механизмы обеспечения целостности данных, реализуя функции одноименных служб, выполняют взаимосвязанные процедуры шифрования и дешифрования данных отправителя и получателя.

Механизмы обеспечения аутентификации, на практике обычно совмещаемые с шифрованием, цифровой подписью и арбитражем, реализуют одностороннюю или взаимную аутентификацию, когда проверка подписи осуществляется либо одним из взаимодействующих одноуровневых объектов, либо она является взаимной.

Механизмы подстановки трафика, используемые для реализации службы засекречивания потока данных, основываются на генерации фиктивных блоков, их шифрования и передаче по каналам связи. Этим затрудняется и даже нейтрализуется возможность получения информации об абонентах сети и характере потоков информации в ней.

Механизмы управления маршрутизацией обеспечивают выбор безопасных, физически надежных маршрутов для передачи секретных сведений.

Механизмы арбитража обеспечивают подтверждение третьей стороной (арбитром) характеристик данных, передаваемых между абонентами сети.

Службы безопасности и механизмы реализации их функций распределены по уровням эталонной модели ВОС [45].

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 3833; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.14 сек.