Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вычисление ошибки выборки. Практическая реализация




Практическая реализация.

Гнездовая (серийная) выборка.

Здесь отбираются не люди, а группы. Группы отбираются случайным образом, а внутри них проводится сплошной опрос. Например, в ВУЗе с большим количеством студенческих групп отбор можно проводить путем случайного отбора этих групп и дальнейшего сплошного опроса в этих группах.

Формулы для расчета ошибки репрезентативности при гнездовом отборе даны в таблице 15.

Таблица SEQ Таблица \* ARABIC 15.

Формулы ошибки репрезентативности для стратифицированной выборки. [3, 29]

Предмет изучения. Повторный отбор. Бесповторный отбор.
Среднее значение признака.
Доля признака.

Где:

- межгрупповая дисперсия.

r - число групп в выборке.

- групповая средняя.

- общая средняя.

R - число групп в генеральной совокупности.

- межгрупповая доля.

Ясно, что доверительный интервал при гнездовой выборке будет меньше (выборка точней) при той же надежности чем при случайной, т.к. межгрупповая дисперсия меньше общей дисперсии.

Внутригрупповая дисперсия нам не нужна, т.к. мы опрашиваем все гнездо целиком и поэтому отклонения выборочного показателя от генерального внутри этой группы не имеем. Следовательно, нас должно волновать то, правильно ли мы выбрали сами группы. Поэтому мы и учитываем лишь межгрупповую дисперсию.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 376; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.