КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Модель без дефицита
В соответствии с терминологией транспортной модели поставщики представлены обычным и сверхурочным производством для различных этапов. Потребители задаются спросом соответствующих этапов. Затраты на «транспортировку» единицы продукции от любого поставщика к любому потребителю представляются суммой соответствующих производственных затрат и затрат на хранение единицы продукции. Матрица полных затрат для эквивалентной транспортной задачи приведена в следующей табл. 6.10: Таблица 6.10
Дополнительный столбец используется для балансировки транспортной задачи, т.е. S = . Затраты на единицу продукции в дополнительном столбце равны нулю. Так как дефицит не допускается, то продукцию, выпускаемую на рассматриваемом этапе, нельзя использовать для удовлетворения спроса предыдущих этапов. В таблице это ограничение представлено заштрихованными ячейками, что, в сущности, эквивалентно очень большим затратам на единицу продукции. Так как задолженность в модели не допускается, то для каждого этапа k в нее необходимо включить ограничение, состоящее в том, что накопленный спрос не должен превышать соответствующий общий объем произведенной продукции, т.е. ³ , k = 1, 2,..., N. Так как спрос на этапе i должен быть удовлетворен прежде, чем спрос на этапах
Дата добавления: 2014-12-29; Просмотров: 316; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |