Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Принципы оценивания погрешностей




Классификация погрешностей

ПОГРЕШНОСТЕЙ

 

 

Качество средств и результатов измерений принято характеризовать, указывая их погрешности. Введение понятия "погрешность" требует определения и четкого разграничения трех понятий: истинного и действительного значений измеряемой физической величины и результата измерения. Истинное значение физической величины — это значение, идеальным образом отражающее свойство данного объекта как в количественном, так и в качественном отношении. Оно не зависит от средств нашего познания и является той абсолютной истиной, к которой мы стремимся, пытаясь выразить ее в виде числовых значений. На практике это абстрактное понятие приходится заменять понятием "действительное значение". Действительное значение физической величины. — значение, найденное экспериментально и настолько приближающееся к истинному, что для данной цели оно может быть использовано вместо него. Результат измерения представляет собой приближенную оценку истинного значения величины, найденную путем измерения.

Понятие "погрешность" — одно из центральных в метрологии, где используются понятия "погрешность результата измерения" и "погрешность средства измерения". Погрешность результата измерения — это разница между результатом измерения X и истинным (или действительным) значением Q измеряемой величины:

(4.1)

Она указывает границы неопределенности значения измеряемой величины. Погрешность средства измерения — разность между показанием СИ и истинным (действительным) значением измеряемой ФВ. Она характеризует точность результатов измерений, проводимых данным средством.

Эти два понятия во многом близки друг к другу и классифицируются по одинаковым признакам.

По характеру проявления погрешности делятся на случайные, систематические, прогрессирующие и грубые (промахи).

Заметим, что из приведенного выше определения погрешности никак не следует, что она должна состоять из каких-либо составляющих. Деление погрешности на составляющие было введено для удобства обработки результатов измерений исходя из характера их проявления, В процессе формирования метрологии было обнаружено, что погрешность не является постоянной величиной. Путем элементарного анализа установлено, что одна ее часть проявляется как постоянная величина, а другая — изменяется непредсказуемо. Эти части назвали систематической и случайной погрешностями.

Как будет показано в разд. 4.3, изменение погрешности во времени представляет собой нестационарный случайный процесс. Разделение погрешности на систематическую, прогрессирующую и случайную составляющие представляет собой попытку описать различные участки частотного спектра этого широкополосного процесса: инфранизкочастотный, низкочастотный и высокочастотный.

Случайная погрешность — составляющая погрешности измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера ФВ, проведенных с одинаковой тщательностью в одних и тех же условиях. В появлении таких погрешностей (рис. 4.1) не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.

Рис. 4.1. Изменение случайной погрешности от измерения к измерению

 

В отличие от систематических случайные погрешности нельзя исключить из результатов измерений путем введения поправки, однако их можно существенно уменьшить путем увеличения числа наблюдений. Поэтому для получения результата, минимально отличающегося от истинного значения измеряемой величины, проводят многократные измерения требуемой величины с последующей математической обработкой экспериментальных данных.

Большое значение имеет изучение случайной погрешности как функции номера наблюдения i или соответствующего ему момента времени t проведения измерений, т.е. Di = D(ti). Отдельные значения погрешности являются значениями функции A(t), следовательно, погрешность измерения есть случайная функция времени. При проведении многократных измерений получается одна реализация такой функции. Именно такая реализация показана на рис. 4.1. Повтор серии измерений даст нам другую реализацию этой функции, отличающуюся от первой, и т. д. Погрешность, соответствующая каждому i-му измерению, является сечением случайной функции D(t). В каждом сечении данной функции можно найти среднее значение, вокруг которого группируются погрешности в различных реализациях. Если через полученные таким образом средние значения провести плавную кривую, то она будет характеризовать общую тенденцию изменения погрешности во времени.

Систематическая погрешность — составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же ФВ. Постоянная и переменная систематические погрешности показаны на рис. 4.2. Их отличительный признак заключается в том, что они могут быть предсказаны, обнаружены и благодаря этому почти полностью устранены введением соответствующей поправки.

Следует отметить, что в последнее время приведенное выше определение систематической погрешности подвергается обоснованной критике, особенно в связи с техническими измерениями. Весьма аргументированно предлагается [7, 58] считать систематическую погрешность специфической, "вырожденной" случайной величиной (см. разд. 5.1), обладающей некоторыми, но не всеми свойствами случайной величины, изучаемой в теории вероятностей и математической статистике. Ее свойства, которые необходимо учитывать при объединении составляющих погрешности, отражаются теми же характеристиками, что и свойства "настоящих" случайных величин: дисперсией (средним квадратическим отклонением) и коэффициентом взаимной корреляции.

Рис. 4.2. Постоянная и переменная систематические погрешности

Прогрессирующая (дрейфовая) погрешность — это непредсказуемая погрешность, медленно меняющаяся во времени. Впервые это понятие было введено в монографии М.Ф. Маликова "Основы метрологии" [17], изданной в 1949 г. Отличительные особенности прогрессирующих погрешностей:

• они могут быть скорректированы поправками только в данный момент времени, а далее вновь непредсказуемо изменяются;

• изменения прогрессирующих погрешностей во времени — нестационарный случайный процесс, и поэтому в рамках хорошо разработанной теории стационарных случайных процессов они могут быть описаны лишь с известными оговорками.

Прогрессирующая погрешность — это понятие, специфичное для нестационарного случайного процесса изменения погрешности во времени, оно не может быть сведено к понятиям случайной и систематической погрешностей. Последние характерны лишь для стационарных случайных процессов. Прогрессирующая погрешность может возникнуть вследствие как непостоянства во времени текущего математического ожидания нестационарного случайного процесса, так и изменения во времени его дисперсии или формы закона распределения.

Понятие прогрессирующей погрешности широко используется при исследовании динамики погрешностей СИ [5] и метрологической надежности последних.

Грубая погрешность (промах) — это случайная погрешность результата отдельного наблюдения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда. Они, как правило, возникают из-за ошибок или неправильных действий оператора (его психофизиологического состояния, неверного отсчета, ошибок в записях или вычислениях, неправильного включения приборов или сбоев в их работе и др.). Возможной причиной возникновения промахов также могут быть кратковременные резкие изменения условий проведения измерений. Если промахи обнаруживаются в процессе измерений, то результаты, их содержащие, отбрасывают. Однако чаще всего промахи выявляют только при окончательной обработке результатов измерений с помощью специальных критериев, которые рассмотрены в гл. 7.

По способу выражения различают абсолютную, относительную и приведенную погрешности.

Абсолютная погрешность описывается формулой (4.1) и выражается в единицах измеряемой величины. Однако она не может в полной мере служить показателем точности измерений, так как одно и то же ее значение, например, Д = 0,05 мм при X = 100 мм соответствует достаточно высокой точности измерений, а при X — 1 мм — низкой. Поэтому и вводится понятие относительной погрешности. Относительная погрешность — это отношение абсолютной погрешности измерения к истинному значению измеряемой величины:

(4.2)

Эта наглядная характеристика точности результата измерения не годится для нормирования погрешности СИ, так как при изменении значений Q принимает различные значения вплоть до бесконечности при Q = 0. В связи с этим для указания и нормирования погрешности СИ используется еще одна разновидность погрешности — приведенная.

Приведенная погрешность — это относительная погрешность, в которой абсолютная погрешность СИ отнесена к условно принятому значению QN, постоянному во всем диапазоне измерений или его части:

(4.3)

Условно принятое значение QN называют нормирующим. Чаще всего за него принимают верхний предел измерений данного СИ, применительно к которым и используется главным образом понятие "приведенная погрешность".

В зависимости от места возникновения различают инструментальные, методические и субъективные погрешности.

Инструментальная погрешность обусловлена погрешностью применяемого СИ. Иногда эту погрешность называют аппаратурной.

Методическая погрешность измерения обусловлена:

• отличием принятой модели объекта измерения от модели, адекватно описывающей его свойство, которое определяется путем измерения;

• влиянием способов применения СИ. Это имеет место, например, при измерении напряжения вольтметром с конечным значением внутреннего сопротивления. В данном случае вольтметр шунтирует участок цепи, на котором измеряется напряжение, и оно оказывается меньше, чем было до присоединения вольтметра;

• влиянием алгоритмов (формул), по которым производятся вычисления результатов измерений;

• влиянием других факторов, не связанных со свойствами используемых средств измерения.

Отличительной особенностью методических погрешностей является то, что они не могут быть указаны в нормативно-технической документации на используемое СИ, поскольку от него не зависят, а должны определяться оператором в каждом конкретном случае. В связи с этим оператор должен четко различать фактически измеряемую им величину и величину, подлежащую измерению.

 

Пример 4.1. Определить в общем виде методическую погрешность измерения мощности постоянного тока косвенным, методом по показаниям амперметра и вольтметра при двух схемах их включения, показанных на рис. 4.3. Внутренние сопротивления амперметра и вольтметра соответственно равны Кд и Rv.

При использовании схемы на рис. 4.3,а измеренное значение мощности постоянного тока

Рис. 4.3. Два варианта включения амперметра и вольтметра при

косвенном методе измерения мощности постоянного тока

где I — ток, измеряемый амперметром; 1н — ток, протекающий через сопротивление нагрузки rh; Iv — ток, протекающий через вольтметр; Рн — действительное значение измеряемой мощности.

 

Абсолютная методическая погрешность измерения мощности по схеме на рис. 4.3,а составляет

Относительная методическая погрешность в этом случае рассчитывается по формуле

Аналогично для схемы на рис. 4.3,6 измеряемое значение мощности

где U — напряжение, измеряемое вольтметром; UA — падение напряжения на амперметре. При этом абсолютная методическая погрешность измерения мощности

`

Относительная методическая погрешность в данном случае рассчитывается по формуле

Анализ формул, описывающих относительные погрешности, показывает, что первую схему (см. рис. 4.3,а) целесообразно использовать для измерения мощности низкоомных нагрузок, так как при rh ® 0 погрешность также стремится к нулю. По аналогичным причинам вторую схему (рис. 4.3,б) выгоднее применять для измерения мощности на высокоомных нагрузках. Граница между высокоомными и низкоомными нагрузками определяется в рассматриваемом случае параметрами используемых средств измерений. Действительно, из равенства методических погрешностей для каждой из схем получаем

Пусть RA = 0,002 Ом, a Rv = 1000 Ом, тогда Rнгр = 1,41 Ом. В этом случае методическая погрешность измерения мощности составит 0,14 %.

Субъективная (личная) погрешность измерения обусловлена погрешностью отсчета оператором показаний по шкалам СИ, диаграммам регистрирующих приборов. Они вызываются состоянием оператора, его положением во время работы, несовершенством органов чувств, эргономическими свойствами СИ. Характеристики личной погрешности определяют на основе нормированной номинальной цены деления шкалы измерительного прибора (или диаграммной бумаги регистрирующего прибора) с учетом способности "среднего оператора" к интерполяции в пределах деления шкалы.

 

Пример 4.2. Пусть цена деления равномерной шкалы равна Хд единиц измеряемой физической величины, длина деления равна Ьд мм. Определить наибольшее значение личной погрешности.

При условии, что средний оператор может интерполировать в пределах деления шагами по 0,2 деления, т.е. по 0,2L, наибольшее значение личной погрешности

 

По зависимости абсолютной погрешности от значений измеряемой величины различают погрешности (рис. 4.4):

 

Рис. 4.4. Аддитивная (а), мультипликативная (б) и нелинейная (в)

погрешности

 

аддитивные Dа, не зависящие от измеряемой величины;

мультипликативные Dм, которые прямо пропорциональны измеряемой величине;

нелинейные Dн, имеющие нелинейную зависимость от измеряемой величины.

Эти погрешности применяют в основном для описания метрологических характеристик СИ. Разделение погрешностей на аддитивные, мультипликативные и нелинейные весьма существенно при решении вопроса о нормировании и математическом описании погрешностей СИ.

Примеры аддитивных погрешностей — от постоянного груза на чашке весов, от неточной установки на нуль стрелки прибора перед измерением, от термо-ЭДС в цепях постоянного тока. Причинами возникновения мультипликативных погрешностей могут быть: изменение коэффициента усиления усилителя, изменение жесткости мембраны датчика манометра или пружины прибора, изменение опорного напряжения в цифровом вольтметре.

По влиянию внешних условий различают основную и дополнительную погрешности СИ. Основной называется погрешность СИ, определяемая в нормальных условиях его применения. Для каждого СИ в нормативно-технических документах оговариваются условия эксплуатации — совокупность влияющих величин (температура окружающей среды, влажность, давление, напряжение и частота питающей сети и др.), при которых нормируется его погрешность. Дополнительной называется погрешность СИ, возникающая вследствие отклонения какой-либо из влияющих величин.

В зависимости от влияния характера изменения измеряемых величин погрешности СИ делят на статические и динамические. Статическая погрешность — это погрешность СИ применяемого для измерения ФВ, принимаемой за неизменную. Динамической называется погрешность СИ, возникающая дополнительно при измерении переменной ФВ и обусловленная несоответствием его реакции на скорость (частоту) изменения измеряемого сигнала.

 

 

Оценивание погрешностей производится с целью получения объективных данных о точности результата измерения. Точность результата измерения характеризуется погрешностью. Погрешность измерения описывается определенной математической моделью, выбор которой обуславливается имеющимися априорными сведениями об источниках погрешности, а также данными, полученными в ходе измерений. С помощью выбранной модели определяются характеристики и параметры погрешности, используемые для к-оли-чественного выражения тех или иных ее свойств.

Характеристики погрешности принято делить на точечные и интервальные. К точечным относятся СКО случайной погрешности и предел сверху для модуля систематической погрешности, к интервальным — границы неопределенности результата измерения. Если эти границы определяются как отвечающие некоторой доверительной вероятности, то они называются доверительными интервалами. Если же минимально возможные в конкретном случае границы погрешности оценивают так, что погрешность, выходящую за них, встретить нельзя, то они называются предельными (безусловными) интервалами.

В основу выбора оценок погрешностей положен ряд принципов. Во-первых, оцениваются отдельные характеристики и параметры выбранной модели погрешности. Это связано с тем, что модели погрешностей, как правило, сложны и описываются многими параметрами. Определение их всех весьма затруднительно, а иногда и невозможно. Кроме этого, в большинстве практических случаев полное описание модели погрешности содержит избыточную информацию, в то время как знание отдельных ее характеристик вполне достаточно для достижения цели измерения. Во-вторых, оценки погрешности определяют приближенно, с точностью, согласованной с целью измерения. Это обусловлено тем, что погрешности определяют лишь зону неопределенности результата измерения и их не требуется знать очень точно. В-третьих, погрешности оцениваются сверху, поэтому погрешность лучше преувеличить, чем преуменьшить, так как в первом случае снижается качество измерений, а во втором — возможно полное обесценивание результатов всего измерения. В-четвертых, поскольку стремятся получить реалистические значения оценки погрешности результата измерения, т.е. не слишком завышенные и не слишком заниженные, точность измерений должна соответствовать цели измерения. Излишняя точность ведет к неоправданному расходу средств и времени. Недостаточная точность в зависимости от цели измерения может привести к признанию годным в действительности негодного изделия, к принятию ошибочного решения и т. п.

Оценивание погрешностей может проводится до (априорное) и после (апостериорное) измерения. Априорное оценивание — это проверка возможности обеспечить требуемую точность измерений, проводимых в заданных условиях выбранным методом с помощью конкретных СИ. Оно проводится в случаях:

• нормирования метрологических характеристик СИ;

• разработки методик выполнения измерений;

• выбора средств измерений для решения конкретной измерительной задачи;

• подготовки измерений, проводимых с помощью конкретного СИ.

Апостериорную оценку проводят в тех случаях, когда априорная оценка неудовлетворительна или получена на основе типовых метрологических характеристик, а требуется учесть индивидуальные свойства используемого СИ. Такую оценку следует рассматривать как коррекцию априорных оценок.

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 458; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.