Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

На пути к Великому объединению




 

С созданием квантовой хромодинамики появилась надежда на по­строение единой теории всех (или хотя бы трех из четырех) фунда­ментальных взаимодействий. Модели, единым образом описывающие хотя бы, три из четырех фундаментальных взаимодействий, называются моделями Великого объединения. Теоретические схемы, в рамках которых объединяются все известные типы взаимодействий (сильное, слабое, электро­магнитное и гравитационное) называются моделями супергравитации.

Опыт успешного объединения слабого и электромагнитного вза­имодействий на основе идеи калибровочных полей подсказал воз­можные пути дальнейшего развития принципа единства физики, объ­единения фундаментальных физических взаимодействий. Один из них основан на том удивительном факте, что константы взаимодей­ствия электромагнитного, слабого и сильного взаимодействий стано­вятся равными друг другу при одной и той же энергии. Эту энергию называли энергией объединения. При энергии более 1014 ГэВ, или на расстояниях 10-29 см, сильные и слабые взаимодействия описывают­ся единой константой, т. е. имеют общую природу. Кварки и лептоны здесь практически не различимы.

В 70—90-е гг. было разработано несколько конкурирующих между собой теорий Великого объединения. Все они основаны на одной и той же идее. Если электрослабое и сильное взаимодействия в дейст­вительности представляют собой лишь две стороны Великого едино­го взаимодействия, то последнему также должно соответствовать калибровочное поле с некоторой сложной симметрией. Она должна быть достаточно общей, способной охватить все калибровочные сим­метрии, содержащиеся и в квантовой хромодинамике, и в теории электрослабого взаимодействия. Отыскание такой симметрии — главная задача на пути создания единой теории сильного и электрослабого взаимодействия. Существуют разные подходы, порождаю­щие конкурирующие варианты теорий Великого объединения.

Тем не менее все эти гипотетические варианты Великого объеди­нения имеют ряд общих особенностей. Во-первых, во всех гипотезах кварки и лептоны — носители сильного и электрослабого взаимодей­ствий — включаются в единую теоретическую схему. До сих пор они рассматривались как совершенно различные объекты. Во-вторых, привлечение абстрактных калибровочных симметрий приводит к открытию новых типов полей, обладающих новыми свойствами, например способностью превращать кварки в лептоны.

В простейшем варианте теории Великого объединения для пре­вращения кварков в лептоны требуется двадцать четыре поля. Две­надцать из квантов этих полей уже известны: фотон, две W-частицы, Z-частица и восемь глюонов. Остальные двенадцать квантов — новые сверхтяжелые промежуточные бозоны, объединенные общим назва­нием Х- и У-частицы (обладающие цветом и электрическим зарядом). Эти кванты соответствуют полям, поддерживающим более широкую калибровочную симметрию и перемешивающим кварки с лептонами. Следовательно, Х- и У-частицы могут превращать кварки в лептоны (и наоборот).

На основе теорий Великого объединения предсказаны по край­ней мере две важные закономерности, которые могут быть провере­ны экспериментально: нестабильность протона и существование магнитных монополей. Экспериментальное обнаружение распада про­тона и магнитных монополей могло бы стать веским доводом в пользу теорий Великого объединения. На проверку этих предсказаний на­правлены усилия экспериментаторов. Обнаружение распада прото­на было бы самым великим экспериментом XX в.! Но пока еще твердо установленных экспериментальных данных на этот счет нет.

А о прямом экспериментальном обнаружении Х- и У-бозонов речь пока и вовсе не идет. Дело в том, что теории Великого объединения имеют дело с энергией частиц выше 10-14 ГэВ. Это очень высокая энергия. Трудно сказать, когда удастся получить частицы столь высо­ких энергий в ускорителях. Современные ускорители с трудом дости­гают энергии 100 ГэВ. И потому основной областью применения и проверки теорий Великого объединения является космология. Без этих теорий невозможно описать раннюю стадию эволюции Вселен­ной, когда температура первичной плазмы достигала 1027 K. Именно в таких условиях могли рождаться и аннигилировать сверхтяжелые бозоны Х и У.

Но объединение трех из четырех фундаментальных взаимодейст­вий — это еще не единая теория в подлинном смысле слова. Ведь остается еще гравитация. Теоретические модели, в которых объеди­няются все четыре взаимодействия, называются супергравитацией.

Супергравитация базируется на идее суперсимметрии, т.е. такого перехода от глобальной калибровочной симметрии к локальной, ко­торый бы позволил переходить от фермионов (носителей субстрата материи) к бозонам (носителям структуры материи, переносчикам взаимодействий) и наоборот. Одна из теоретических моделей сводит воедино 70 частиц со спином 0; 56 частиц со спином 1/2; 28 частиц со спином 1; 8 частиц по спином 3/2 (их назвали гравитино) и 1 частица со спином 2 (гравитон). Все эти частицы были объединены единой суперсилой при колоссальной энергии 1019 ГэВ (Т = 1032К, r ≈ 10-33 см, ρ ≈ 1094 г/см3). В теориях суперсимметрии возникла также идея о введении новых дополнительных измерений (10, 11 или даже 26) пространства, которые позволят описать все проявления свойств вещества и переносчиков взаимодействий. Только три из них прояв­ляются в нашем мире, а остальные остались скрученными, замкнуты­ми в масштабе r ≈ 10-33 см. Вместе с тем на пути объединения гравита­ции с остальными фундаментальными взаимодействиями пока еще остается много проблем.

Таким образом, последовательное объединение фундаменталь­ных взаимодействий началось с синтеза электричества и магнетизма в рамках теории Максвелла в XIX в. Объединение слабого и электро­магнитного взаимодействий получило надежное подтверждение в 1983 г. благодаря открытию W- и Z-частиц. Данных, подтверждающих Великое объединение, пока нет, но их ожидают. Число теоретичес­ких предпосылок для создания единой теории всех фундаментальных взаимодействий быстро растет. Возможно, что уже в начале XXI в. эта величайшая задача всей истории познания материи будет решена (рис. 4). В определенном смысле это означает конец физической науки как науки о фундаментальных основаниях материи.

 

Но не исключены и другие варианты развития физики XXI в — открытие новых фундаментальных взаимодействий, новых субкварковых частиц, появление иных трактовок единства материи и др. Особенно значимы на этом пути те необычные представления, кото­рые сейчас складываются там, где микромир оказывается связанным с мегамиром, ультрамалое с ультрабольшим, физика с астрономией и космологией.

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 433; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.