Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Типы, структура и порядок работы микропроцессора




Микропроцессор (МП),иначе, центральный процессор - Central Processing Unit (CPU) - функционально законченное программно-управляемое устройство обработки информации, выполненное в ви­де одной или нескольких больших (БИС) или сверхбольших (СБИС) интегральных схем.

Для МП на БИС или СБИС характерны:

• простота производства (по единой технологии);

• низкая стоимость (при массовом производстве);

• малые габариты (пластина площадью несколько квадратных сан­тиметров или кубик со стороной несколько миллиметров);

• высокая надежность;

• малое потребление энергии.

Микропроцессор выполняет следующие функции:

• чтение и дешифрацию команд из основной памяти;

• чтение данных из ОП и регистров адаптеров внешних устройств;

• прием и обработку запросов и команд от адаптеров на обслужи­вание ВУ;

• обработку данных и их запись в ОП и регистры адаптеров ВУ;

• выработку управляющих сигналов для всех прочих узлов и блоков персонального компьютера.

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами. Основ­ных шин три: шина данных, адресная шина и командная шина.

 

Адресная шина. У процессоров Intel Pentium (а именно они наиболее распростра­нены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных линий. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комби­нация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

Адресное пространство - это максимальное количество ячеек основной памяти, которое может быть непосредственно адресовано микропроцессором.

 

Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В компьютерах, собранных на базе про­цессоров Intel Pentium, шина данных 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов. Разрядность шины данных микропроцессора, определяет разрядность ПК в целом, разрядность шины адреса МП – его адресное пространство.

 

Шина команд. Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укла­дываются в один байт, однако есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная (напри­мер, в процессоре Intel Pentium), хотя существуют 64-разрядные процессоры и даже 128-разрядные.

 

Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти, а также данные, находя­щиеся во внешних портах процессора. Часть данных он интерпретирует непосред­ственно как данные, часть данных — как адресные данные, а часть — как команды. Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относя­щиеся к одному семейству, имеют одинаковые или близкие системы команд. Про­цессоры, относящиеся к разным семействам, различаются по системе команд и невзаимозаменяемые.

 

Процессоры с расширенной и сокращенной системой команд. Чем шире набор системных команд процессора, тем сложнее его архитектура, тем длиннее формаль­ная запись команды (в байтах), тем выше средняя продолжительность исполне­ния одной команды, измеренная в тактах работы процессора. Так, например, сис­тема команд процессоров Intel Pentium в настоящее время насчитывает более тысячи различных команд. Такие процессоры называют процессорами с расши­ренной системой командCISC-процессорами (CISC — Complex Instruction Set Computing). Это процессоры с полным набором инструкций, к которым в основном и относятся ранее рассмотренные из семейства х8б. Широкий набор усложняет декодирование инструкций, на что расходуются аппаратные ресурсы. Возрастает и число тактов, необходимое для выполнения инструкций.

В противоположность CISC-процессорам в середине 80-х годов появились процессоры архитектуры RISC с сокращенной системой команд (RISC — Reduced Instruction Set Computing). При такой архитектуре количество команд в системе намного меньше (содержится набор только простых, чаще всего встречающихся в программах команд), и каждая из них выполняется намного быстрее. Таким образом, программы, состоя­щие из простейших команд, выполняются этими процессорами много быстрее. Обо­ротная сторона сокращенного набора команд состоит в том, что сложные операции приходится эмулировать далеко не эффективной последовательностью простейших команд сокращенного набора.. При выполнении более сложных команд в микропроцессоре производится их автоматическая “сборка” из простых. В этих МП на выполнение каждой простой команды за счет их наложения и параллельного выполнения тратится один машинный такт (на выполнение даже самой короткой команды из системы CISC обычно тратится 4 такта).

Современные RISC МП (80860; 80960, 80870, Power PC) являются 64-разрядными при быстродействии до 150 млн. оп/с. Микропроцессоры Power PC (Performance Optimized With Enhanced RISC PC) весьма перспективны и уже сейчас широко применяются в машинах-серверах и в ПК типа Macintosh.

Микропроцессоры типа RISC имеют очень высокое быстродействие, но программно не совместимы с CISC-процессорами: при выполнении программ, разработанных для ПК типа IBМ PC, они могут лишь эмулировать (моделировать, имитировать) МП типа CISC на программном уровне, что приводит к резкому уменьшению их эффективной производительности.

В результате конкуренции между двумя подходами к архитектуре процессоров сложилось следующее распределение их сфер применения:

• СISС-процессоры используют в универсальных вычислительных системах;

• RISC-процессоры используют в специализированных вычислительных системах или устройствах, ориентированных на выполнение единообразных операций.

Для персональных компьютеров платформы IBM PC долгое время выпускались только СISС-процессоры, к которым относятся и все процессоры семейства Intel Pentium. Однако в последнее время компания AMD приступила к выпуску про­цессоров семейства AMD-K6 (начиная с 486-го МП), в основе которых лежит внутреннее ядро, выпол­ненное по RISC-архитектуре, и внешняя структура, выполненная по архитектуре CISC. Таким образом, сегодня появились процессоры, совместимые по системе команд с процессорами х86, но имеющие гибридную архитектуру, в которых CISC-процессор имеет RISC-ядро.

Все новые МП создаются на основе технологий, обеспечивающих формирование элементов с линейным размером порядка 0,5 мкм (традиционные МП 80486 и Pentium-66 использовали 0,8-мкм элементы). Уменьшение размеров элементов обеспечивает возможность:

• увеличения тактов ой частоты МП до 100 МГц и выше, поскольку тормозом в увеличении быстродействия уже является недостаточная (!) скорость распространения «света» (300 000 км/с);

• уменьшения перегрева МП, позволяя использовать пониженное напряжение питания 3,3 В (вместо стандартных 5В).

В настоящее время в стадии разработки находятся модели микропроцессоров типа МISC-процессоры (Minimum Instruction Set Computing), которые будут содержать минимально необходимый набор команд и обладать весьма высоким быстродействием, что также позволит снизить время на выполнение команд.

 

Совместимость процессоров. Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процес­сором. Процессоры, имеющие разные системы команд, как правило, несовмести­мы или ограниченно совместимы на программном уровне.

Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству х86. Родоначальником этого семейства был 16-разряд­ный процессор Intel 8086, на базе которого собиралась первая модель компьютера IBM PC. Впоследствии выпускались процессоры Intel 80286, Intel 80386, Intel 80486, Intel Pentium 60,66,75,90,100,133; несколько моделей процессоров Intel Pentium MMX, модели Intel Pentium Pro, Intel Pentium II, Intel Celeron, Intel Xeon, Intel Pentium III и другие. Все эти модели, и не только они, а также многие модели про­цессоров компаний AMD и Cyrix относятся к семейству х86 и обладают совмести­мостью по принципу «сверху вниз».

Принцип совместимости «сверху вниз» — это пример неполной совместимости, когда каждый новый процессор «понимает» все команды своих предшественников, но не наоборот. Это естественно, поскольку двадцать лет назад разработчики процес­соров не могли предусмотреть систему команд, нужную для современных программ. Благодаря такой совместимости на современном компьютере можно выполнять любые программы, созданные в последние десятилетия для любого из предшеству­ющих компьютеров, принадлежащего той же аппаратной платформе.

 

Основные параметры процессоров. Основными параметрами процессоров явля­ются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффици­ент внутреннего умножения тактовой частоты и размер кэш-памяти.

Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенное понижение рабочего напряжения. Ранние модели процессоров х86 имели рабочее напряжение 5 В. С переходом к процессорам Intel Pentium оно было понижено до 3,3 В, а в настоящее время оно составляет менее 3 В. Причем ядро процессора пита­ется пониженным напряжением 2,2 В. Понижение рабочего напряжения позволяет уменьшить расстояния между структурными элементами в кристалле процессора до десятитысячных долей миллиметра, не опасаясь электрического пробоя. Пропор­ционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это позволяет увеличивать его производительность без угрозы перегрева.

Разрядность процессора показывает, сколько бит данных он может принять и обра­ботать в своих регистрах за один раз {за один такт). Первые процессоры х86 были 16-разрядными. Начиная с процессора 80386 они имеют 32-разрядную архитектуру. Современные процессоры семейства Intel Pentium остаются 32-разрядными, хотя и работают с 64-разрядной шиной данных (разрядность процессора определяется не разрядностью шины данных, а разрядностью командной шины).

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник; в ручных механических часах их задает пружинный маятник; в электронных часах для этого есть колебательный контур, задающий такты строго определенной частоты. В персональном компью­тере тактовые импульсы задает одна из микросхем, входящая в микропроцессор­ный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в еди­ницу времени, тем выше его производительность. Первые процессоры х86 могли работать с частотой не выше 4,77 МГц, а сегодня рабочие частоты некоторых про­цессоров уже превосходят 500 миллионов тактов в секунду (500 МГц).

Тактовые сигналы процессор получает от материнской платы, которая, в отличие от процессора, представляет собой не кристалл кремния, а большой набор проводни­ков и микросхем. По чисто физическим причинам материнская плата не может рабо­тать со столь высокими частотами, как процессор. Сегодня ее предел составляет 100-133 МГц. Для получения более высоких частот в процессоре происходит внут­реннее умножение частоты на коэффициент 3; 3,5; 4; 4,5; 5 и более.

Обмен данными внутри процессора происходит в несколько раз быстрее, чем обмен с другими устройствами, например с оперативной памятью. Для того чтобы умень­шить количество обращений к оперативной памяти, внутри процессора создают буферную область — так называемую кэш-память. Это как бы «сверхоперативная память». Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш-память. «Удачные» обращения в кэш-память называют попаданиями в кэш. Процент попаданий тем выше, чем больше размер кэш-памяти, поэтому высокопроизводительные процессоры комплектуют повышенным объемом кэш-памяти.

Нередко кэш-память распределяют по нескольким уровням. Кэш первого уровня выполняется в том же кристалле, что и сам процессор, и имеет объем порядка десят­ков Кбайт. Кэш второго уровня находится либо в кристалле процессора, либо в том же узле, что и процессор, хотя и исполняется на отдельном кристалле. Кэш­-память первого и второго уровня работает на частоте, согласованной с частотой ядра процессора.

Кэш-память третьего уровня выполняют на быстродействующих микросхемах типа SRAM и размещают на материнской плате вблизи процессора. Ее объемы могут достигать нескольких Мбайт, но работает она на частоте материнской платы.

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 642; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.