КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Распределенные системы
Общая тенденция развития систем управления базами данных показывает, что распределенные системы получают все большее развитие и распространение. Этому способствует как мировая глобализация, которая приводит к ускорению процессов централизации и децентрализации информационных систем, так и технический прогресс в области хранения и передачи данных. Растут объемы и быстродействие накопителей информации. Все большей становится доля оптоволоконных каналов связи, которые позволяют передавать огромные массивы данных с невиданной до сих пор скоростью. Кроме того, ширится выпуск персональных домашних компьютеров и ноутбуков. Все это вкупе с прогрессирующим снижением стоимости коммуникационных услуг ведет к росту количества удаленных рабочих групп (офисов), а также расширению числа работников, выполняющих свои функции вне своего офиса или основного рабочего места. Эти факторы и способствуют развитию распределенных систем и, соответственно, распределенных баз данных.
Распределенные базы данных По общему мнению, Россия и другие страны СНГ, обладая большой территорией, просто обречены на создание и развитие информационных систем на основе распределенных баз данных. Не секрет, что практически все преуспевающие средние и крупные региональные компании имеют свои представительства в Москве и/или Петербурге. Поэтому при управлении такими ' предприятиями не обойтись без сложных корпоративных распределенных информационных систем. Практика показывает, что обычно решение вопроса создания корпоративной ИС ищется в уже достаточно освоенной и всем знакомой плоскости клиент-сервер на базе локальной сети с централизованной базой данных. Выбирается одна из популярных многопользовательских СУБД и доступные средства для быстрой разработки приложений (как правило, это пара Interbase/Delphi). Создается система, включающая в себя одну или несколько баз данных, а также набор обращающихся к ней (к ним) приложений, реализующих прикладные функции, необходимые конечному пользователю. Данная технология весьма неплохо работает в ограниченном масштабе, например, в рамках одного офиса или нескольких удаленных рабочих групп-филиалов, связанных с головным предприятием. Однако время не стоит на месте, компания расширяется и выходит на тот уровень, когда новые задачи требуют децентрализации хранения и обработки данных и, соответственно, качественного скачка в развитии информационной системы. В этом случае технология клиент-сервер, реализованная на основе централизованной базы данных, уже не может удовлетворить новых потребностей. Информационная система становится неработоспособной и ее приходится фактически создавать заново. Очевидно, что обычные системы "клиент-сервер" могут развиваться только по эволюционному экстенсивному пути в ограниченном масштабе и становятся неэффективными, когда экстенсивные пути развития исчерпывают свои возможности. Затраты на модификацию и сопровождение такой системы в критический момент становятся сравнимыми с затратами на создание новой системы. Выходом из тупика может служить применение распределенных баз данных (БД). В зависимости от архитектуры, можно выделить локальные и распределенные БД. Все части локальной БД размещаются на одном компьютере, а распределенной — на нескольких. Исторически, развитие баз данных, как локальных, так и распределенных, шло от иерархических моделей к сетевым и реляционным. Первые иерархические и сетевые СУБД были созданы в начале 60-х годов прошлого века. Причиной послужила необходимость управления огромным количеством записей, связанных друг с другом, как правило, иерархическим образом (обслуживание выборов, переписей населения, моделирование ядерных испытаний, погодных и геологических явлений, информационное обеспечение космических полетов и т. д.). Причиной выбора иерархической модели во многом послужило ее подобие уже имевшимся и хорошо отработанным и освоенным на практике многочисленным массивам информации на неэлектронных носителях (банки данных, картотеки, досье, справочники). Среди реализованных на практике СУБД этого типа следует отметить системы IMS (Information Management System) компании IBM, а также TDMS (Time-Shared Date Management System) компании Development Corporation; Mark IV Multi — Access Retrieval System компании Control Data Corporation; System — 2000 разработки SAS-Institute. Отношения в иерархической модели данных организованы в виде совокупностей деревьев, где дерево — структура данных, в которой тип сегмента потомка связан только с одним типом сегмента предка (рис. 4.1). Рис. 4.1. Иерархическая модель БД В терминологии баз данных, это адекватно наличию жестких связей "один-к-одному" или "один-ко-многим" между записями. К недостаткам и ограничениям иерархической модели данных можно отнести: отсутствие явного разделения логических и физических характеристик модели, что выражается в жесткой привязке БД к носителю-информации, потребность в дополнительных затратах и ухищрениях для описания неиерархических связей, что обуславливает низкую гибкость модели, не позволяющую ей эволюционировать в изменяющихся условиях. Сетевая модель данных — это представление сетевыми структурами типа запись данных, связанных отношениями "один-к-одному" или "один-ко-многим" (рис. 4.2). Основная идеология и стандартные требования к этой модели были разработаны комитетом Database Task Group (DTBG) на рубеже 60—70-х годов. Впервые сетевая архитектура была реализована в СУБД Integrated Data Store (IDS) компании General Electric и IDMS компании Computer Associates. <="" img=""> Рис. 4.2. Сетевая модель БД В отличие от иерархической модели, в сетевой допускается наличие нескольких связей от сегмента-потомка к сегментам-предкам. Сетевая модель допускает также использование в базах данных связей "многие-ко-многим". Это позволяет устранить многие недостатки иерархической модели, такие как: низкую приспособленность к описанию данных неиерархической структуры и слабую гибкость при развитии системы. Реляционная модель была описана в 1970—1971 годах в работах Е. Ф. Кодда. Она основана на процедурном языке обработки таблиц данных и языке запросов. В сетевой и иерархической моделях использовались жесткие физические подходы к связыванию записей из разных файлов путем применения физических указателей или адреса на диске. Такие базы существенно затрудняют и ограничивают операции над данными. Кроме того, является очевидным, что иерархические и сетевые базы данных весьма чувствительны к аппаратным изменениям. Перенос данных с одного накопителя на другой, или вообще Изменение числа приводит к необходимости внимательно и кропотливо изменять адреса в связях записей на новые. Также такие модели чувствительны к реструктуризации самой базы (добавление или удаление новых полей приводит к изменению физических адресов записей). Все эти проблемы преодолела реляционная модель, основанная на логических отношениях данных. Именно реляционная модель породила все современные известные СУБД, ее детищем является SQL, благодаря использованию реляционной модели возможно создание распределенных баз данных. Под распределенной БД (Distributed DataBase — DDB) обычно подразумевают базу данных, включающую фрагменты из нескольких баз данных, которые располагаются на различных узлах сети компьютеров, и, возможно, управляются различными СУБД. Распределенная база данных выглядит с точки зрения пользователей и прикладных программ как обычная локальная база данных. В этом смысле слово "распределенная" отражает способ организации базы данных, но не ее внешнюю характеристику. Согласно принципам, изложенным в трудах известного ученого Дэйта (С. J. Date), можно выделить 12 основных требований к распределенной базе данных (они же являются основными признаками):
Рассмотрим каждое из этих требований подробнее.
Локальная автономия Это качество означает, что управление данными на каждом из узлов распределенной системы выполняется локально. База данных, расположенная на одном из узлов, является неотъемлемым компонентом распределенной системы. Будучи фрагментом общего пространства данных, она, в то же время, функционирует как полноценная локальная база данных. Управление ею выполняется локально и независимо от других узлов системы.
Децентрализация Вытекает из свойства локальной автономии. В идеальной системе все узлы равноправны и независимы, а расположенные на них базы являются равноправными поставщиками информации в общее пространство данных. База данных на каждом из узлов самодостаточна и может функционировать при отсутствии других узлов. Она включает собственный полный словарь данных и полностью защищена от несанкционированного доступа. В распределенных БД поддержка целостности и согласованности данных, в свете предыдущих требований, представляет собой довольно сложную проблему. Синхронное и согласованное изменение данных в нескольких локальных БД, составляющих распределенную базу данных, достигается, как правило, применением протокола двухфазной фиксации транзакций. Кроме согласования и верификации данных, этот протокол может выполнять защиту от сбоев в системе в критических случаях (обрыв связи, например). Если распределенная БД однородна — т. е. на всех узлах данные хранятся в формате одной базы и на всех узлах функционирует одна и та же СУБД, то используется механизм двухфазной фиксации транзакций для конкретной СУБД. В случае же неоднородности распределенной БД, для обеспечения согласованных изменений в нескольких базах данных, используют менеджеры распределенных транзакций. Это, однако, возможно, если участники обработки распределенной транзакции (СУБД, функционирующие на узлах системы), поддерживают ХА-интерфейс, определенный в спецификации DTP консорциума Х/Ореn. ХА-интерфейс имеют, например, Informix, Microsoft SQL Server, Oracle, Sybase, CA-Openlngres. Если в распределенной БД предусмотрено тиражирование (репликация) данных, то это сразу предъявляет дополнительные жесткие требования к дисциплине поддержки целостности данных на узлах, куда направлены тиражируемые потоки. Проблема состоит в том, что изменения в данных могут инициироваться как локально — на данном узле, так и извне, посредством тиражирования. Неизбежно возникают конфликты по изменениям, которые необходимо отслеживать и разрешать.
Непрерывность операций Это качество можно трактовать как возможность непрерывного доступа (формат 24x7 — доступ 24 часа в сутки 7 дней в неделю) в рамках распределенной БД к данным вне зависимости от их расположения и операций, выполняемых на локальных узлах. Одним словом, данные доступны всегда, а операции над ними могут выполняться непрерывно.
Прозрачность расположения Это свойство означает полную прозрачность расположения данных. Пользователь, обращающийся к распределенной БД, ничего не должен знать о реальном (физическом) размещении данных в узлах информационной системы. Все операции над данными выполняются без учета их местонахождения. Передача и обработка запросов к базам данных осуществляется встроенными системными средствами. Прозрачность расположения в реальных продуктах должна поддерживаться соответствующими механизмами, реализованными в рамках конкретной СУБД или проекта в целом. При этом разработчики СУБД придерживаются различных подходов. Типичным решением данной задачи является использование так называемых синонимов (Alias) баз данных.
Независимая фрагментация Это свойство трактуется как возможность распределенного (т. е. на различных узлах, а не в одном месте) размещения данных, логически представляющих собой единое целое. Существует фрагментация двух типов: горизонтальная и вертикальная. Первая означает хранение строк одной таблицы на различных узлах (фактически, хранение строк одной логической таблицы в нескольких идентичных физических таблицах на различных узлах). Вторая означает распределение столбцов логической таблицы по нескольким узлам (типичный пример реализации — SQL-запрос из нескольких физически обособленных таблиц).
Независимое тиражирование Тиражирование данных — это асинхронный (в общем случае) процесс переноса изменений объектов исходной базы данных в базы, расположенные на других узлах распределенной системы. В данном контексте независимость тиражирования означает возможность переноса изменений между базами данных средствами, невидимыми пользователю распределенной системы. Данное свойство означает, что тиражирование возможно и достигается внутрисистемными средствами. Принципиальная характеристика тиражирования данных (Data Replication — DR) заключается в отказе от физического распределения, привязки данных. Суть репликации состоит в том, что любая база данных (как для СУБД, так и для работающих с ней пользователей) всегда является локальной; данные размещаются локально на том узле сети, где они обрабатываются; все транзакции в системе завершаются локально. Тиражирование данных — это асинхронный перенос изменений объектов исходной базы данных в базы, принадлежащие различным узлам распределенной системы. Функции тиражирования выполняет, как правило, специальный модуль СУБД — сервер тиражирования данных, называемый репли-катором (СУБД CA-Openlngres и Sybase). В других СУБД (Informix-OnLine Dynamic Server) регашкатор встроен в сервер или поставляется опционально (Oracle). Специфика механизмов репликации данных зависит от используемой СУБД. Один из простейших вариантов репликации — использование так называемых "моментальных снимков" (Snapshot) — сохранение на разных узлах копий той или иной таблицы в определенный момент времени; данные копии периодически (раз в неделю, например) подлежат обновлению. Детали тиражирования данных полностью скрыты от прикладной программы; ее функционирование никак не зависит от работы репликатора, который целиком находится в ведении администратора базы данных. Следовательно, для переноса программы в распределенную среду с тиражируемыми данными не требуется ее модификация. Синхронное обновление распределенных БД и технология репликации данных — в определенном смысле, антиподы. Краеугольный камень первой — синхронное завершение транзакций одновременно на нескольких узлах распределенной системы, т. е. синхронная фиксация изменений в распределенной БД. Ее "ахиллесова пята" — жесткие требования к производительности и надежности каналов связи. Если база данных распределена по нескольким территориально удаленным узлам, объединенным медленными и ненадежными каналами связи, а число одновременно работающих пользователей составляет сотни и выше, то вероятность того, что распределенная транзакция будет зафиксирована в обозримом временном интервале, становится чрезвычайно малой. В таких условиях (характерных, кстати, для большинства отечественных организаций) обработка распределенных данных практически невозможна. Технология репликации данных не требует синхронной фиксации изменений, что является, несомненно, ее сильной стороной. В действительности далеко не во всех задачах требуется обеспечение идентичности БД на различных узлах в любое время. Достаточно поддерживать тождественность данных лишь в определенные критические моменты времени (генерация суточного, недельного, месячного, годового отчета). Можно накапливать изменения в данных в виде транзакций в одном узле и периодически копировать эти изменения на другие узлы. Налицо преимущества распределенной технологии. Во-первых, данные всегда расположены там, где они обрабатываются — следовательно, скорость доступа к ним существенно увеличивается. Во-вторых, передача только операций, изменяющих данные (а не всех операций доступа к удаленным данным), да еще к тому же в асинхронном режиме позволяет значительно уменьшить трафик. В-третьих, со стороны исходной базы для принимающих баз репликатор выступает как процесс, инициированный одним пользователем, в то время как в физически распределенной среде с каждым локальным сервером работают все пользователи распределенной системы, конкурирующие за ресурсы друг с другом. Наконец, в-четвертых, никакой продолжительный сбой связи не в состоянии нарушить передачу изменений. Дело в том, что тиражирование предполагает буферизацию потока изменений (транзакций); поэтому после восстановления связи передача возобновляется с той транзакции, на которой тиражирование было прервано. В то же время технология репликации данных не лишена недостатков. Например, невозможно полностью исключить конфликты между двумя версиями одной и той же записи. Такой конфликт может возникнуть, когда, вследствие все той же асинхронности, два пользователя на разных узлах исправят одну и ту же запись в тот момент, пока изменения в данных из первой базы еще не были перенесены во вторую. При проектировании распределенной среды с использованием репликации данных необходимо предусмотреть возможность возникновения конфликтных ситуаций и запрограммировать репликатор на какой-либо вариант их разрешения. В этом смысле применение DR-технологии — наиболее сильная угроза целостности распределенных баз данных. При использовании механизмов репликации данных также остро стоит вопрос совместимости разнородных локальных баз данных, составляющих исходную БД. Зачастую штатные средства тиражирования в составе данной конкретной БД позволяют переносить данные в однородную базу. Ответом стало появление продуктов, выполняющих тиражирование между разнородными базами данных. Здесь развитие технологий пошло по двум путям. Первый — создание средств унифицированного доступа к данным (стандарт ODBC — Open DataBase Connectivity). Очевидный недостаток ODBC — недоступность для приложения многих полезных механизмов каждой конкретной СУБД, поскольку они могут быть использованы в большинстве случаев только через расширения SQL в диалекте языка данной СУБД, но в стандарте ODBC эти расширения могут не поддерживаться. Другой подход - это создание шлюзов, позволяющих приложениям оперировать над базами данных в ином формате так, как будто это собственные базы данных. Задача шлюза — организация доступа к унаследованным БД и служит для решения задач согласования форматов баз данных при переходе к какой-либо одной СУБД. Шлюзы можно рассматривать как средство, облегчающее миграцию, но не как универсальное средство межоперабельности в распределенной системе. Вообще, универсального рецепта решения задачи межоперабельности в этом контексте не существует — все определяется конкретной ситуацией, историей информационной системы и массой других факторов.
Обработка распределенных запросов Это свойство распределенной БД трактуется как возможность выполнения операций выборки, сформулированных в рамках обычного запроса на языке SQL. To есть операцию выборки из распределенной базы данных можно сформулировать с помощью тех же языковых средств, что и операцию над локальной базой данных. Обработка распределенных запросов — задача, более сложная, нежели обработка локальных запросов, и она требует интеллектуального решения с помощью особого компонента — оптимизатора распределенных запросов. Предположим, у нас имеется распределенная база данных, размещенная на двух узлах. Пусть, таблица detail хранится на одном узле, а таблица main — на другом. Размер первой таблицы — 2000 строк, размер второй — 200 строк (множество товаров поставляется небольшим числом поставщиков). Допустим, что выполняется запрос: SELECT detail_name, main_name, main _address FROM detail, main WHERE detail, main _number = main, main _number...; Тогда результирующая таблица представляет собой объединение таблиц detail и main, выполненное по столбцу detail.main_number (внешний ключ) И main.main _number (первичный ключ). Данный запрос является распределенным, т. к. затрагивает таблицы, принадлежащие различным локальным базам данных. Для его нормального выполнения необходимо иметь обе исходные таблицы на одном узле. Следовательно, одна из таблиц должна быть передана по сети. Очевидно, что это должна быть таблица меньшего размера, т. е. таблица main. Таким образом, оптимизатор распределенных запросов должен учитывать такие параметры, как размер таблиц, статистику распределения данных по узлам, объем данных, передаваемых между узлами, скорость коммуникационных линий, структуры хранения данных, соотношение производительности процессоров на разных узлах и т. д. От алгоритмов работы оптимизатора распределенных запросов впрямую зависит скорость работы базы данных с такими запросами.
Обработка распределенных транзакций Это качество распределенных баз данных можно трактовать как возможность выполнения операций обновления БД, не разрушающее целостность и согласованность данных. Эта цель достигается применением двухфазного протокола фиксации транзакций, ставшего фактическим стандартом обработки распределенных транзакций. Его применение гарантирует согласованное изменение данных на нескольких узлах в рамках распределенной (или, как ее еще называют, глобальной) транзакции.
Независимость от оборудования Это свойство означает, что в качестве узлов распределенной системы могут выступать компьютеры любых моделей и производителей — от мэйнфреймов до персональных компьютеров и даже ноутбуков.
Независимость от операционных систем Это качество вытекает из предыдущего и означает многообразие операционных систем, управляющих узлами распределенной системы.
Прозрачность сети Доступ к любым базам данных может осуществляться по сети. Спектр поддерживаемых конкретной СУБД сетевых протоколов не должен быть ограничением системы с распределенными базами данных. Это качество формулируется максимально широко — в распределенной системе возможны любые сетевые протоколы.
Независимость от баз данных Это качество означает, что в распределенной системе могут мирно сосуществовать СУБД различных производителей, и возможны операции поиска и обновления в базах данных различных моделей и форматов. Локальные базы данных, составляющих распределенную БД, автономны, независимы и самоопределены; доступ к ним обеспечивается СУБД, в общем случае от различных поставщиков. Связи между узлами — это потоки тиражируемых данных. Топология распределенных БД может варьироваться в широком диапазоне. В целом топология БД определяется географией информационной системы и направленностью потоков тиражирования данных. Не все из вышеперечисленных требований могут выполняться одновременно. Всем требованиям сразу может удовлетворить, пожалуй, только достаточно идеализированная, а потому и практически бесполезная база данных. В особенности это касается последнего пункта — независимости от программного обеспечения БД. Не все СУБД различных производителей могут мирно сосуществовать в рамках одного проекта. Поэтому при выборе средств реализации необходимо достаточное внимание уделять вопросам совместимости. В последнее время с развитием новых программных средств создания БД (Delphi, например) или развития новых технологий (CORBA), этот вопрос становится менее острым.
Многозвенная архитектура Архитектура клиент-сервер Распределенные системы — это системы клиент-сервер. Существует, по меньшей мере, три модели клиент-сервер:
Первые две модели являются двухзвенными и не могут рассматриваться в качестве базовой модели распределенной системы. Третья модель — трехзвенная. Она (как и все многозвенные модели) хороша тем, что в ней интерфейс работы с пользователем полностью независим от компонента обработки данных. Собственно, трехзвенной ее можно считать постольку, поскольку в ней явно выделены:
Middleware — это главный компонент трехзвенных распределенных систем. Он выполняет функции управления транзакциями и коммуникациями, транспортировки запросов, управления именами и иные функции. Существует фундаментальное различие между технологией типа "сервер запросов—клиент запросов" и трехзвенными технологиями. В первом случае клиент явным образом запрашивает данные, зная структуру базы данных (имеет место так называемая "поставка данных" клиенту). Клиент передает СУБД, например, SQL-запрос, а в ответ получает данные. Осуществляется жесткая связь типов, для реализации которой все СУБД используют закрытый SQL-канал. Он строится двумя процессами: SQL/Net на компьютере-клиенте и SQL/Net на компьютере-сервере и порождается по инициативе клиента оператором connect. Канал называется закрытым в том смысле, что невозможно, например, написать программу, которая будет шифровать SQL-запросы по специальному алгоритму или другим образом будет вмешиваться в процесс передачи данных между клиентским и серверным приложением. В случае трехзвенной схемы клиент явно запрашивает один из сервисов (предоставляемых прикладным компонентом), например, передавая ему некоторое сообщение, и получает ответ также в виде сообщения. Клиент направляет запрос во внешнюю среду, ничего не зная о месте расположения сервиса. Имеет место так называемая "поставка функций" клиенту.
Дата добавления: 2014-12-29; Просмотров: 1596; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |