Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Магнитное поле 2 страница




Для того, чтобы построить векторную диаграмму напряжений и токов при вынужденных колебаниях в электрической цепи, нужно знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для всех участков цепи.

Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением R, конденсатору емкости C и катушки индуктивности L. Во всех трех случаях напряжения на резисторе, конденсаторе и катушке равны напряжению источника переменного тока.

1. Резистор в цепи переменного тока

   

Здесь через IR обозначена амплитуда тока, протекающего через резистор. Связь между амплитудами тока и напряжения на резисторе выражается соотношением

 
RIR = UR.

 

 

Фазовый сдвиг между током и напряжением на резисторе равен нулю.

2. Конденсатор в цепи переменного тока

   

 

   

Соотношение между амплитудами тока IC и напряжения UC:

 

 

 

Ток опережает по фазе напряжение на угол

3. Катушка в цепи переменного тока

   

 

   

Соотношение между амплитудами тока IL и напряжения UL:

 
ωLIL = UL.

 

 

Ток отстает по фазе от напряжения на угол

Теперь можно построить векторную диаграмму для последовательного RLC-контура, в котором происходят вынужденные колебания на частоте ω. Поскольку ток, протекающий через последовательно соединенные участки цепи, один и тот же, векторную диаграмму удобно строить относительно вектора, изображающего колебания тока в цепи. Амплитуду тока обозначим через I0. Фаза тока принимается равной нулю. Это вполне допустимо, так как физический интерес представляют не абсолютные значения фаз, а относительные фазовые сдвиги. Векторная диаграмма для последовательного RLC-контура изображена на рис. 5.3.2.

Рисунок 5.3.3. Векторная диаграмма для последовательной RLC-цепи.

Векторная диаграмма на рис. 5.3.2 построена для случая, когда или В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.

Из рисунка видно, что

   

откуда следует

 

 

 

Из выражения для I0 видно, что амплитуда тока принимает максимальное значение при условии

   

или

 

 

 

Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω0 электрической цепи называется электрическим резонансом. При резонансе

 

 

 

Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной RLC-цепи называется резонансом напряжений. Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов R, L и C (так называемый резонанс токов).

При последовательном резонансе (ω = ω0) амплитуды UC и UL напряжений на конденсаторе и катушке резко возрастают:

   

В § 2.2 было введено понятие добротности RLC-контура:

   

Таким образом, при резонансе амплитуды напряжений на конденсаторе и катушке в Q раз превышают амплитуду напряжения внешнего источника.

Рисунок 5.3.4. Резонансные кривые для контуров с различными значениями добротности Q.

Рис. 5.3.4 иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды UC напряжения на конденсаторе к амплитуде 0 напряжения источника от его частоты ω для различных значений добротности Q. Кривые на рис. 5.3.3 называются резонансными кривыми.

Можно показать, что максимум резонансных кривых для контуров с низкой добротностью несколько сдвинуты в область низких частот.

Глава 5. Электромагнитные колебания и волны


5.4. Закон Ома для цепи переменного тока. Мощность. window.top.document.title = "5.4. Закон Ома для цепи переменного тока. Мощность.";

В § 2.3 были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности:

 

 

(*)

Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений.

Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов R, L и C. Физические величины R, и ωL называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки.

При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения: p = J · u. Практический интерес представляет среднее за период переменного тока значение мощности

   

Здесь I0 и U0 – амплитудные значения тока и напряжения на данном участке цепи, φ – фазовый сдвиг между током и напряжением. Черта означает знак усреднения. Если участок цепи содержит только резистор с сопротивлением R, то фазовый сдвиг φ = 0:

 

 

 

Для того, чтобы это выражение по виду совпадало с формулой для мощности постоянного тока, вводятся понятия действующих или эффективных значений силы тока и напряжения:

 

 

 

Средняя мощность переменного тока на участке цепи, содержащем резистор, равна

 

 

 

Если участок цепи содержит только конденсатор емкости C, то фазовый сдвиг между током и напряжением Поэтому

   

Аналогично можно показать, что PL = 0.

Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.

Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e(t) и током J(t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать

  J(t) = I0 cos ωt; e(t) = 0 cos (ωt + φ).  

Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 5.3.2). Средняя мощность, развиваемая источником переменного тока, равна

 

 

 

Как видно из векторной диаграммы, UR = 0 · cos φ, поэтому Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.

В § 2.3 было выведено соотношение между амплитудами тока I0 и напряжения 0 для последовательной RLC-цепи:

   

Величину

 

 

 

называют полным сопротивлением цепи переменного тока. Формулу, выражающую связь между амплитудными значениями тока и напряжения в цепи, можно записать в виде

 
ZI0 = 0.

 

(**)

Это соотношение называют законом Ома для цепи переменного тока. Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).

Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный RLC-контур, подключенный к внешнему источнику переменного тока (рис. 5.4.1).

Рисунок 5.4.1. Параллельный RLC-контур.

При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах R, C и L одно и то же и равно напряжению внешнего источника. Токи, текущие в разных ветвях цепи, отличаются не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Поэтому полное сопротивление цепи нельзя вычислить по законам параллельного соединения цепей постоянного тока. Векторная диаграмма для параллельного RLC-контура изображена на рис. 5.4.2.

Рисунок 5.4.2. Векторная диаграмма для параллельного RLC-контура.

Из диаграммы следует:

   

Поэтому полное сопротивление параллельного RLC-контура выражается соотношением

   

При параллельном резонансе (ω2 = 1 / LC) полное сопротивление цепи принимает максимальное значение, равное активному сопротивлению резистора:

  Z = Zmax = R.  

Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.

Глава 5. Электромагнитные колебания и волны


5.5. Трансформаторы. Передача электрической энергии window.top.document.title = "5.5. Трансформаторы. Передача электрической энергии";

Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы. Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная (рис. 5.5.1).

Рисунок 5.5.1. Простейший трансформатор и его условное изображение в схемах. n1 и n2 – числа витков в обмотках.

Первичная обмотка подсоединяется к источнику переменного тока с ЭДС e1(t), поэтому в ней возникает ток J1(t), создающий в сердечнике трансформатора переменный магнитный поток Φ, который практически без рассеяния циркулирует по замкнутому магнитному сердечнику и, следовательно, пронизывает все витки первичной и вторичной обмоток. В режиме холостого хода, то есть при разомкнутой цепи вторичной обмотки, ток в первичной обмотке весьма мал из-за большого индуктивного сопротивления обмотки. В этом режиме трансформатор потребляет небольшую мощность.

Ситуация резко изменяется, когда в цепь вторичной обмотки включается сопротивление нагрузки Rн, и в ней возникает переменный ток J2(t). Теперь полный магнитный поток Φ в сердечнике создается обоими токами. Но согласно правилу Ленца магнитный поток Φ2, создаваемый индуцированным во вторичной обмотке током J2, направлен навстречу потоку Φ1, создаваемому током J1 в первичной обмотке: Φ = Φ1 – Φ2. Отсюда следует, что токи J1 и J2 изменяются в противофазе, то есть имеют фазовый сдвиг, равный 180°.

Другой важный вывод состоит в том, что ток J1 в первичной обмотке в режиме нагрузки значительно больше тока холостого хода. Это следует из того, что полный магнитный поток Φ в сердечнике должен быть в режиме нагрузки таким же, как и в режиме холостого хода, так как напряжение u1 на первичной обмотке в обоих случаях одно и то же. Это напряжение равно ЭДС источника e1 переменного тока. Так как магнитные потоки, пронизывающие обмотки, пропорциональны числу n1 и n2 витков в них, можно записать для первичной обмотки:

   

для вторичной обмотки:

   

Следовательно,

 

 

 

Знак минус означает, что напряжения u1 и u2 находятся в противофазе, также как и токи J1 и J2 в обмотках. Поэтому фазовый сдвиг φ1 между напряжением u1 и током J1 в первичной обмотке равен фазовому сдвигу φ2 между напряжением u2 и током J2 во вторичной обмотке. Если нагрузкой вторичной обмотки является активное сопротивление Rн, то φ1 = φ2 = 0.

Для амплитудных значений напряжений на обмотках можно записать:

 

 

 

Коэффициент K = n2 / n1 есть коэффициент трансформации. При K > 0 трансформатор называется повышающим, при K < 0 – понижающим.

Написанные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике. Для уменьшения токов Фуко сердечники транформатора изготавливают обычно из тонких стальных листов, изолированных друг от друга. Существует еще один механизм потерь энергии, связанный с гистерезисными явлениями в сердечнике. При циклическом перемагничивании ферромагнитных материалов возникают потери электромагнитной энергии, прямо пропорциональные площади петли гистерезиса.

У хороших современных трансформаторов потери энергии при нагрузках, близких к номинальным, не превышает 1–2 %, поэтому к ним приближенно применима теория идеального трансформатора.

Если пренебречь потерями энергии, то мощность P1, потребляемая идеальным трансформатором от источника переменного тока, равна мощности P2, передаваемой нагрузке.

 

 

 

Отсюда следует, что

   

то есть токи в обмотках обратно пропорциональны числу витков.

Принимая во внимание, что U2 = RнI2, можно получить следующее соотношение

 

 

 

Отношение Rэкв = U1 / I1 можно рассматривать как эквивалентное активное сопротивление первичной цепи, когда вторичная обмотка нагружена на сопротивление Rн. Таким образом, трансформатор «трансформирует» не только напряжения и токи, но и сопротивления.

В современной технике нашли широкое применение трансформаторы различных конструкций. В радиотехнических устройствах используются небольшие, маломощные трансформаторы, имеющие обычно несколько обмоток (понижающих или повышающих напряжение источника переменного тока). В электротехнике часто применяются так называемые трехфазные трансформаторы, предназначенные для одновременного повышения или понижения трех напряжений, сдвинутых по фазе относительно друг друга на углы 120°.

Мощные трехфазные трансформаторы используются в линиях передач электроэнергии на большие расстояния.

Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.

Для уменьшения потерь на нагревания проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток частотой 50 Гц. На рис. 5.5.2 представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии.

Следует отметить, что при повышении напряжения в линиях передачи увеличиваются утечки энергии через воздух. В сырую погоду вблизи проводов линии может возникнуть ток называетмый коронный разряд, который можно обнаружить по характерному потрескиванию. Коэффициент полезного действия линии передач не превышает 90 %.

Рисунок 5.5.2. Условная схема высоковольтной линии передачи. Трансформаторы изменяют напряжение в нескольких точках линии. На схеме изображен только один из трех проводов высоковольтной линии.

Глава 5. Электромагнитные колебания и волны


5.6. Электромагнитные волны window.top.document.title = "5.6. Электромагнитные волны";

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Рис. 5.6.1 и 5.6.2 иллюстрируют взаимное превращение электрического и магнитного полей.

Рисунок 5.6.1. Закон электромагнитной индукции в трактовке Максвелла.

 

Рисунок 5.6.2. Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле.

 

Гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла). Из теории Максвелла вытекает ряд важных выводов:

1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 5.6.3).

Рисунок 5.6.3. Синусоидальная (гармоническая) электромагнитная волна. Векторы , и взаимно перпендикулярны.

2. Электромагнитные волны распространяются в веществе с конечной скоростью

 

 

 

Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

 

 

 

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.

3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.

 

 

 

Отсюда следует, что в электромагнитной волне модули индукции магнитного поля и напряженности электрического поля в каждой точке пространства связаны соотношением




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 455; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.