Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Состояние, ключ шифрования и число раундов




Спецификация алгоритма

Обоснование разработки

При разработке алгоритма учитывались следующие три критерия:

  • противодействие всем известным атакам;
  • скорость и компактность кода для широкого круга платформ;
  • простота разработки.

В большинстве алгоритмов шифрования преобразование каждого раунда имеет структуру сети Фейштеля. В этом случае обычно часть битов в каждом промежуточном состоянии просто перемещается без изменения в другую половину. Преобразование раунда алгоритма Rijndael не имеет структуру сети Фейштеля. Вместо этого преобразование каждого раунда состоит из четырех различных преобразований, называемых слоями.

Каждый слой разрабатывался с учетом противодействия линейному и дифференциальному криптоанализу. В основу каждого слоя положена своя собственная функция:

  1. Нелинейный слой состоит из параллельного применения S-boxes для оптимизации нелинейных свойств в наихудшем случае.
  2. Слой линейного перемешивания строк гарантирует высокую степень диффузии для нескольких раундов.
  3. Слой линейного перемешивания столбцов также гарантирует высокую степень диффузии для нескольких раундов.
  4. Дополнительный слой ключа состоит из простого XOR промежуточного состояния с ключом раунда.

Перед первым раундом применяется дополнительное забеливание с использованием ключа. Причина этого состоит в следующем. Любой слой после последнего или до первого добавления ключа может быть просто снят без знания ключа и тем самым не добавляет безопасности в алгоритм (например, начальная и конечная перестановки в DES). Начальное или конечное добавление ключа применяется также в некоторых других алгоритмах, например IDEA, SAFER и Blowfish.

Для того чтобы сделать структуру алгоритма более простой, слой линейного перемешивания последнего раунда отличается от слоя перемешивания других раундов. Можно показать, что это в любом случае не повышает и не понижает безопасность. Это аналогично отсутствию операции swap в последнем раунде DES.

Rijndael является блочным алгоритмом шифрования с переменной длиной блока и переменной длиной ключа. Длина блока и длина ключа могут быть независимо установлены в 128, 192 или 256 бит.

Различные преобразования выполняются над промежуточным результатом, называемым состоянием.

Состояние можно рассматривать как двумерный массив байтов. Этот массив имеет четыре строки и различное число столбцов, обозначаемое как Nb, равное длине блока, деленной на 32. Ключ также можно рассматривать как двумерный массив с четырьмя строками. Число столбцов ключа шифрования, обозначаемое как Nk, равно длине ключа, деленной на 32.

В некоторых случаях эти блоки также рассматриваются как одномерные массивы четырехбайтных векторов, где каждый вектор состоит из соответствующего столбца. Такие массивы имеют длину 4, 6 или 8 соответственно, и индексы в диапазонах 0 … 3, 0 … 5 или 0 … 7. Четырехбайтные вектора иногда мы будем называть словами.

Если необходимо указать четыре отдельных байта в четырехбайтном векторе, будет использоваться нотация (a, b, c, d), где a, b, c и d являются байтами в позициях 0, 1, 2 и 3, соответственно, в рассматриваемом столбце, векторе или слове.


Рис. 6.1. Пример состояния (с Nb = 6) и ключа шифрования (с Nk = 4)

Входы и выходы Rijndael считаются одномерными массивами из 8 байтов, пронумерованными от 0 до 4* Nb - 1. Следовательно, эти блоки имеют длину 16, 24 или 32 байта, и массив индексируется в диапазонах 0 … 15, 0 … 23 или 0 … 31. Ключ считается одномерным массивом 8-битных байтов, пронумерованных от 0 до 4* Nk - 1. Следовательно, эти блоки имеют длину 16, 24 или 32 байта, и массив индексируется в диапазонах 0 … 15, 0 … 23 или 0 … 31.

Входные байты алгоритма отображаются в байты состояния в следующем порядке: А0,0, А1,0, А2,0, А3,0, А0,1, А1,1, А2,1, А3,1, … Байты ключа шифрования отображаются в массив в следующем порядке: K0,0, K1,0, K2,0, K3,0, K0,1, K1,1, K2,1, K3,1, … После выполнения операции шифрования выход алгоритма получается из байтов состояния аналогичным образом.

Следовательно, если одноразмерный индекс байта в блоке есть n, и двухмерный индекс есть (i,j), то мы имеем:

I = n mod 4J = n / 4 N = i + 4*j

Более того, индекс i является также номером байта в четырехбайтном векторе или слове, j является индексом вектора или слова во вложенном блоке.

Число раундов обозначается Nr и зависит от значений Nb и Nk, что показано в следующей таблице.

Таблица 6.1. Число раундов как функция от длины блока и длины ключа
Nr Nb = 4 Nb = 6 Nb = 8
Nk = 4      
Nk = 6      
Nk = 8      



Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 490; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.