КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример работы программы
Программа расчета оптимального использования пара представлена на рис. 8.1. В этой программе могут использоваться как новые данные турбоагрегатов, так и архивные данные. В это окно вводим дату в формате «01.02.2005» и время, «01:00-02:00», если дата и время совпадают с уже введенными и сохраненными в базе данных, то в таблице «Расчет потребления свежего пара турбогенераторами, D0 т/ч» выводятся значения за этот промежуток времени.
Рис. 8.2. Окно ввода данных
При этом данные записываются в ту же основную таблицу. Если необходимо исправить значение, это можно сделать в самой таблице и нажать кнопку «Пересчет». Расчетные значения исправит сама программа. Далее нужно записать ограничения на параметры режимов турбогенераторов (рис. 8.3), либо оставить значения в этой таблице такими, какие они были.
Рис. 8.3. Ограничения на параметры режимов турбогенераторов Нажимаем кнопку «Оптимизация» (рис. 8.4).
Рис. 8.4. Окно ввода ограничений по выработке тепловой и электрической энергии В окно на рис. 8.4. нужно внести необходимые значения электрической мощности тепловой энергии, отданной на правый берег и на левый, а также значение перетока. После нажатия «Оk» появляется окно, приведенное на рис. 8.5.
Рис. 8.5. Окно подтверждения нахождения решения В таблице «Решение задачи оптимизации» (рис. 8.6) выдаются оптимальные параметры турбоагрегата. В таблице «Расчет потребления пара» показываются исходное и оптимальное суммарные значения потребления свежего пара (рис. 8.6).
Особенность приведенного алгоритма решения задачи оптимизации заключается в том, что на его основе можно решить задачу оптимизации нагрузки параллельно работающих турбоагрегатов при неполных исходных данных эксплуатации с учетом нормативных энергетических характеристик турбин. Практическое применение разработанной программы оптимизации нагрузки параллельно работающих турбоагрегатов «ТГ-ПАР» показало на конкретном примере, что с ее помощью можно снизить потребление свежего пара до 11%. 9. Автоматизированная информационная система мониторинга В настоящее время на многих электрических станциях промышленных предприятий сложились условия, при которых по многим позициям оборудования сроки эксплуатации значительно превышают парковый ресурс. Для такого оборудования существующие подходы к оценке ресурса и планированию ремонтных работ являются неэффективными и требуют существенной доработки. Так, согласно существующей отраслевой системе технической диагностики и планово-предупредительных ремонтов контроль металла энергоагрегатов осуществляется в периоды капитальных ремонтов, проводимых в соответствии с нормативами через 4–5 лет. Однако для энергооборудования, выработавшего свой парковый ресурс, существующий плановый подход является малоэффективным. В данном случае целесообразным является проведение ремонтов по фактическому состоянию оборудования, определяемому на основании контроля диагностических показателей эксплуатации и металлоконструкций. Методы, объем и периодичность контроля при диагностике состояния металла выбираются таким образом, чтобы обеспечить высокую надежность эксплуатации всех узлов энергооборудования. Накопленный опыт оценки состояния элементов энергооборудования и порядок продления их ресурса после длительной эксплуатации показывает[31], что при наработке, превышающей проектную более чем в 2 раза, должны быть выполнены специальные ресурсные исследования, измерения и расчеты. По результатам этих исследований устанавливается индивидуальный ресурс элемента энергооборудования, т. е. максимальное приближение к предельному состоянию оборудования при сохранении требований к его надежности. Из сказанного следует, что центральными проблемами обеспечения надежности и живучести стареющего оборудования являются проблема прогнозирования индивидуального ресурса оборудования и проблема гибкого планирования ремонтных работ. Решение этих проблем открывает дополнительные пути для получения экономического эффекта, позволяет предупреждать возможные отказы и непредвиденные достижения предельных состояний, более правильно планировать режимы эксплуатации, профилактические мероприятия и снабжение запасными частями. Более того, переход к индивидуальному прогнозированию ведет к увеличению среднего ресурса оборудования, поскольку уменьшает долю агрегатов, преждевременно снимаемых для ремонта, и открывает путь для обоснованного выбора оптимального срока эксплуатации. В ряде случаев рентабельная эксплуатация может быть продолжена в условиях сниженных нагрузок. Поэтому можно рассматривать прогнозирование индивидуального остаточного ресурса как своего рода систему управления процессом эксплуатации и технического обслуживания.
Дата добавления: 2014-12-29; Просмотров: 478; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |