КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Владимир – 2009
Расчётно-графическая работа По дисциплине Выполнил: Проверил: Вариант Z. Задание. Дана электронная схема, изображённая на рис. 1 и состоящая из двух операционных усилителей и однофазного трансформатора. Трансформатор представлен в виде схемы замещения, учитывающей основные и паразитные параметры. Определить устойчивость электронной схемы тремя способами: 1. Путём непосредственного определения полюсов передаточной функции замкнутой системы; 2. По критерию Рауса; 3. По критерию Найквиста. Параметры схемы для данного варианта имеют следующие значения: R 1 = 22 кОм; R 2 = 10 кОм; R 3 = 10 Ом; R 4 = 20 Ом; R 6 = 2 кОм; C 2 = 1 нФ; C 3 = 400 пФ; C 4 = 50 пФ; C 6 = 20 нФ; Коэффициент электромагнитной связи обмоток трансформатора k эм = 0.99; Индуктивность первичной обмотки L 1 = 1 Гн = 1000 мГн; коэффициент трансформации k T = 2.5. В расчётах для удобства сопротивления будем записывать в килоомах, индуктивности – в миллигенри, ёмкости – в нанофарадах, тогда время будет измеряться в микросекундах, частота – в мегагерцах, циклическая частота – в рад/мкс, комплексная частота – в мкс-1. Рассчитаем индуктивность вторичной обмотки: L 2 = L 1/ k T2 = 160 мГн. Рассчитаем взаимную индуктивность обмоток трансформатора: = 0.396 Гн = 396 мГн. В соответствии с заданием способ намотки обмоток трансформатора таков, что ёмкость вторичной обмотки связана с ёмкостью первичной обмотки соотношением C 5 = C 3/ k T2. Рассчитываем C 5 = 64 пФ = 0.064 нФ. Способ намотки обмоток трансформатора таков, что сопротивление вторичной обмотки связано с сопротивлением первичной обмотки соотношением R 5 = R 4/ k T. Рассчитываем R 5 = 8 Ом = 0.008 кОм. Функциональной электрической схеме, изображённой на рис. 1, соответствует структурная схема динамической системы, изображённая на рис. 2. Здесь обозначено: H 1(s) – передаточная функция усилительного каскада (DA1, R 1, R 2, C 2) по неинвертирующему входу; H 2(s) – передаточная функция того же каскада по инвертирующему входу, она выполняет роль передаточной функции отрицательной обратной связи; H 3(s) – передаточная функция трансформатора; H 4(s) – передаточная функция усилительного каскада (DA2, R 6, C 6). Для анализа устойчивости работы динамической системы нужно определить все названные передаточные функции. ; ; . Чтобы рассчитать передаточную функцию H 3(s), нужно выполнить анализ схемы замещения трансформатора операторным методом. Воспользуемся системой MATLAB и вычислительным сценарием cepye, подключив к нему Symbolic Mach Toolbox. В командном окне MATLAB выполним следующую последовательность операторов: s=tf([1 0],1); TM=[1 1 0 0 0 0 0 0; 0 -1 1 1 0 0 0 0; 0 0 0 -1 1 1 0 0; 0 0 0 0 0 -1 1 1]; pv=[tf(0.01) (tf(0.4)*s)^-1 tf(0.02) tf(1000)*s (tf(0.05)*s)^-1 tf(160)*s tf(0.008) (tf(0.5)+tf(0.064)*s)^-1]; PV(4,6)=-tf(396)*s; PV(6,4)=-tf(396)*s; PM=TM*PV*TM.'; % Матрица контурных сопротивлений PS=TM.'/PM*TM; % Матрица входных и взаимных проводимостей ветвей KS=-PS*PV; % Матрица коэффициентов передачи тока KC=PV*PS-eye(size(PV)); % Матрица коэффициентов передачи напрqжения. PC=PV*KS+PV; % Матрица входных и взаимных сопротивлений ветвей H3=minreal(KC(8,1)); H3=minreal_sh(H3)
Переменная TM соответствует матрице главных контуров схемы замещения трансформатора, равной После выполнения записанной последовательности операторов в командном окне появится выражение для передаточной функции трансформатора: Transfer function: 1.562e004 s^3 + 1.388e-008 s^2 - 146.8 s + 1.134e-009 --------------------------------------------------------- s^5 + 876.3 s^4 + 1.416e005 s^3 + 1.563e005 s^2 + 379.9 s Переменная H3 будет содержать tf- выражение искомой передаточной функции H 3(s). Введём в ЭВМ передаточные функции усилительных каскадов: H1=(tf(6)+tf(10)*s)/(tf(1)+tf(10)*s); H2=tf(5)/(tf(1)+tf(10)*s); H4=-tf(1)/s/tf(40); Посчитаем передаточную функцию замкнутой системы без учёта H 1(s): W=minreal(H3*H4/(1+H2*H3*H4)); W=minreal_sh(W,0.4) Transfer function:
-390.6 s^4 - 8.292e004 s^3 - 8285 s^2 + 778.9 s + 77.85 ------------------------------------------------------------------------------- s^7 + 1089 s^6 + 3.277e005 s^5 + 3.024e007 s^4 + 3.618e007 s^3 + 3.355e006 s^2
+ 8062 s + 389.3 Определим корни знаменателя этой передаточной функции: [b,a]=tfdata(W,'v'); ss=roots(a) ss = -662.96 -212.18 -212.18 -1.1098 -0.099916 -0.00057583 + 0.01083i -0.00057583 - 0.01083i Расчёт импульсной характеристики показал, что передаточная функция W (s) имеет семь полюсов. Все они имеют отрицательную действительную часть, следовательно, анализируемая динамическая система устойчива. Передаточная функция H 1(s) не охвачена обратной связью и не содержит правых и мнимых полюсов, значит, она не влияет на устойчивость динамической системы. Поэтому при анализе устойчивости передаточная функция H 1(s) не учитывалась. Для подтверждения сказанного покажем последовательность операторов и сообщений в командном окне MATLAB при построении графика импульсной характеристики замкнутой системы с учётом передаточной функции H 1(s). W1=minreal(H1*W); W1=minreal_sh(W1) impulse(W1,5/min(abs(real(ss)))) grid on set(findobj('type','line'),'linewidth',2,'color',[0 0 0]) Передаточная функция замкнутой системы W1 имеет вид Transfer function:
-390.6 s^4 - 8.312e004 s^3 - 4.973e004 s^2 + 780.7 s + 467.1 ------------------------------------------------------------------------------- s^7 + 1089 s^6 + 3.277e005 s^5 + 3.024e007 s^4 + 3.618e007 s^3 + 3.355e006 s^2
+ 8062 s + 389.3
График импульсной характеристики замкнутой системы показан на рис. 3. Видно, что устойчивость проявляется в виде затухания колебаний. Проведём анализ устойчивости вторым способом. Составим таблицу (матрицу) Рауса для передаточной функции W 1(s). Для этого сначала в массив-строку с именем a запишем коэффициенты полинома знаменателя передаточной функции W1: [b,a]=tfdata(W1,'v') b = Columns 1 through 6 0 0 0 -390.62 -83119 -49727 Columns 7 through 8 780.73 467.12 a = Columns 1 through 6 1 1088.5 3.2768e+005 3.0243e+007 3.6177e+007 3.3548e+006 Columns 7 through 8 8062.5 389.26 r=raus(a) r = 1 3.2768e+005 3.6177e+007 8062.5 1088.5 3.0243e+007 3.3548e+006 389.26 2.9989e+005 3.6174e+007 8062.1 0 3.0112e+007 3.3548e+006 389.26 0 3.6141e+007 8058.2 0 0 3.3481e+006 389.26 0 0 3856.3 0 0 0 389.26 0 0 0 Видно, что в первом столбце этой матрицы нет перемен знака чисел. Из этого следует, что число правых полюсов передаточной функции W 1(s) равно нулю. Это означает, что анализируемая система устойчива. В предыдущем способе анализа также не было найдено ни одного правого комплексного полюса. Использованная в данной последовательности операторов m-функция raus содержит следующие операторы MATLAB: % raus - Составление матрицы Рауса для полинома % r=raus(p) % p - массив-строка коэффициентов полинома, для которого % составляется матрица Рауса % r - матрица Рауса function r=raus(p) n1=length(p); % длина массива коэффициентов полинома n2=ceil(n1/2); % число столюцов матрицы Рауса r=zeros(n1,n2); % распределяем память под матрицу Рауса if p(1)==0, return, end if mod(n1,2)==0 % если длина полинома чётная r([1,2],:)=reshape(p,2,n2); else r([1,2],:)=reshape([p,0],2,n2); end % if mod(n1,2)==0 % Цикл вычислений. Анализируется особые случаи for k=3:n1 if ~any(r(k-1,:)), r(k-1,:)=r(k-2,:).*(n1-k+2-(0:n2-1)*2); end if r(k-1,1)==0, r(k-1,1)=eps(max(abs(r(k-1,:))))*sign(r(k-2,1)); end r(k,1:end-1)=-r(k-2,1)/r(k-1,1)*r(k-1,2:end)+r(k-2,2:end); end
Проведём анализ устойчивости третьим способом. Рассчитаем передаточную функцию разомкнутой системы, равную произведению передаточных функций элементов контура структурной схемы с отрицательной обратной связью. H p(s) = H 2(s)× H 3(s)× H 4(s) = = -7.812e004 s^3 - 6.941e-008 s^2 + 733.8 s - 5.672e-009 ------------------------------------------------------------------------------- 400 s^7 + 3.505e005 s^6 + 5.669e007 s^5 + 6.817e007 s^4 + 6.402e006 s^3
+ 1.52e004 s^2. В командном окне MATLAB выполним последовательность операторов om=logspace(-3,1,1001); Hr=H2*H3*H4; [b,a]=tfdata(Hr,'v'); Hrom=polyval(b,1i*om)./polyval(a,1i*om); Lr=20*log10(abs(Hrom)); Pr=angle(-Hrom)-pi; subplot(2,1,1) semilogx(om,Lr,'k-','linewidth',2) grid on subplot(2,1,2) semilogx(om,Pr*180/pi,'k-','linewidth',2) grid on В результате в одной фигуре MATLAB будет построено два графика: ЛАЧХ и ЛФЧХ разомкнутой системы (рис. 4). По графику или с помощью интерполяции ЛФЧХ определим частоту (рад/мкс), на которой ЛФЧХ проходит через -180О: om1=interp1(Pr,om,-pi,'cubic') om1 = 0.01493 По графику или с помощью интерполяции определим частоту (рад/мкс), на которой модуль коэффициента передачи сигнала равен 0 дБ: om2=interp1(Lr,om,0,'cubic') om2 = 0.010747 Модуль коэффициента передачи сигнала (дБ) на частоте om1 определяется оператором: D1=interp1(om,Lr,om1,'cubic') D1 = -5.5566 Это означает, что система устойчива. Запас устойчивости по модулю составляет 5.5566 дБ. Дефицит устойчивости по фазе (в градусах) определяется по значению ЛФЧХ на частоте om2 оператором: D2=(-pi-interp1(om,Pr,om2,'cubic'))*180/pi D2 = -6.081 Запас устойчивости по модулю составляет 6.081 градусов.
Вывод. Анализ устойчивости динамической системы тремя методами дал один и тот же результат: система устойчива. Первый из этих трёх методов наиболее универсален, но обязательно требует применения вычислительной техники и современного математического ПО. Второй из этих методов не требует применения вычислительной техники и позволяет определить число правых полюсов передаточной функции замкнутой системы. Однако этот метод не позволяет анализировать динамические системы с элементами чистого запаздывания. Этого недостатка лишён третий метод анализа, который также не требует применения вычислительной техники и, кроме всего прочего, позволяет определить запас или дефицит устойчивости по модулю и по фазе, что бывает важно при выборе и синтезе корректирующих устройств.
Дата добавления: 2015-01-03; Просмотров: 262; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |