Имеются четыре урны, содержащие по 3 белых и 7 черных шаров, и шесть урн, содержащих по 8 белых и 2 черных шара. Из наудачу взятой урны вытаскивается один шар, который оказался белым. Тогда вероятность того, что этот шар был вынут из первой серии урн, равна …
0,20
0,80
0,72
0,40
Решение: Предварительно вычислим вероятность события A (вынутый наудачу шар – белый) по формуле полной вероятности: . Здесь – вероятность того, что шар извлечен из первой серии урн; – вероятность того, что шар извлечен из второй серии урн; – условная вероятность того, что вынутый шар белый, если из он извлечен из первой серии урн; – условная вероятность того, что вынутый шар белый, если из он извлечен из второй серии урн. Тогда . Теперь вычислим условную вероятность того, что этот шар был извлечен из первой серии урн, по формуле Байеса: .
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление