Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ранговая корреляция. Система показателей вариации признака, методика расчета, роль в статистическом исследовании




Система показателей вариации признака, методика расчета, роль в статистическом исследовании.

В статистических исследованиях особый интерес представляет анализ систематической вариации, т.к. изучая силу и характер вариации в исследуемой совокупности можно оценить насколько однородной является данная совокупность в количественном, а иногда и качественном отношении, а следовательно насколько характерной является исчисленная средняя величина. Поэтому средние характеристики необходимо дополнять показателями, измеряющими отклонения от средних. Степень близости индивидуальных значений признака (вариант) к средней измеряется рядом абсолютных, средних и относительных статистических показателей. К ним относятся размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение, показатели степени вариации с порядковыми (ранговыми) характеристиками распределения, показатели относительного рассеивания. Для всех показателей вариации общим является следующие:

• если показатель вариации близко к нулю (т.е. индивидуальные значения признака мало отличаются друг от друга), то средняя арифметическая будет достаточно показательной (надежной) характеристикой данной совокупности;

• если же ряд распределения характеризуется значительным рассеиванием (величина показателя вариации сильно отличается от нуля, является большой), то средняя арифметическая будет ненадежной и ее практическое применение будет ограничено.

В соответствии с рабочей программой нашей дисциплины, ниже будут рассмотрены наиболее часто применяемые на практике показатели вариации.

Основой непараметрических методов является принцип нумерации вариант (индивидуальных значений) статистического ряда. Значения признака располагаются по возрастанию (или убыванию). Каждой единице такого ряда присваивается порядковый номер в ряду. Причем номер первый получает наименьшая (или, наоборот, наибольшая) варианта, номер второй получает следующая по величине варианта и т.д. Эти порядковые номера индивидуальных значений (вариант) изучаемого признака, расположенные в ряду в порядке возрастания или убывания своей величины, называются рангами. Затем ранги (порядковые номера) индивидуальных значений факторного признака располагают в порядке возрастания (убывания) и с ними сопоставляются соответствующие ранги (порядковые номера) индивидуальных значений результативного признака. Для повторяющихся индивидуальных значений признака ранг определяется как средняя арифметическая соответствующих номеров. Например, если одинаковые по величине значения признака занимают в ранжированном ряде третье и четвертое места, то ранг (порядковый номер) для каждого из них будет равен.Наличие связи между признаками в данном случае можно получить, если сопоставить последовательность взаимного расположения рангов факторного и результативного признаков. Если с возрастанием величины рангов факторного признака х соответствующие им величины рангов результативного признака у обнаруживают тенденцию к увеличению, можно сделать вывод о наличии прямой (положительной) связи. Если же с увеличением рангов факторного признака ранги результативного признака уменьшаются, то это свидетельствует о возможном наличии между изучаемыми признаками обратной связи




Поделиться с друзьями:


Дата добавления: 2014-12-24; Просмотров: 732; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.