КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Постановка задачи статистического исследования. Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
Седелкина М.П. Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel О Т Ч Е Т о результатах выполнения компьютерной лабораторной работы
Вариант № 13
Выполнил: ст. III курса гр. 21 ФИО Проверил: Лысенко С.Н. ФИО
Москва 2009г. Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования деятельности 30-ти предприятий и частично использует результаты ЛР-1. В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные ЛР-1 после исключения из них аномальных наблюдений.
В процессе статистического исследования необходимо решить ряд задач. 1. Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом. 2. Установить наличие корреляционной связи между признаками Х и Y методом аналитической группировки. 3. Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения η. 4. Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройки Пакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r. 5. Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив: а) значимость и доверительные интервалы коэффициентов а0, а1; б) индекс детерминации R2 и его значимость; в) точность регрессионной модели. 6. Дать экономическую интерпретацию: а) коэффициента регрессии а1; б) коэффициента эластичности К Э; в) остаточных величин εi. 7. Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм. 2. Выводы по результатам выполнения лабораторной работы [3] Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом. Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y. Вывод: Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет место статистическая связь. Предположительный вид связи – линейная прямая. Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки. Корреляционная связь – важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения результативного признака Y (усредняются результативные значения , полученные под воздействием фактора ). Для выявления наличия корреляционной связи используется метод аналитической группировки. Вывод: Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Х закономерно увеличиваются средние групповые значения результативного признака . Следовательно, между признаками Х и Y имеется корреляционная связь. Задача 3. Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения. Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η – эмпирическое корреляционное отношение, задаваемое формулой , где и - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии означает, что оценивается мера влияния признака Х на Y). Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:
Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла. Вывод: Значение коэффициента η = 0,979790289 , что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков. Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r. 4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком X и результативным признаком Y. Инструмент Регрессия на основе исходных данных (xi, yi), производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным. Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком. Вывод: Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения -154,68+ 1,09 х 4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r. Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин " Множественный R "). Вывод: Значение коэффициента корреляции r = 0,913, что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков. Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели. Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи. Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа: 1) оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности; 2) определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2; 3) проверка значимости уравнения регрессии в целом по F -критерию Фишера; 4) оценка погрешности регрессионной модели. 5.1. Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi, yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо: 1. проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли); 2. определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий. Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой: – значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно; – рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92; – доверительные интервалы коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92. 5.1.1. Определение значимости коэффициентов уравнения Уровень значимости – это величина α =1– Р, где Р – заданный уровень надежности (доверительная вероятность). Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95. Для этого уровня надежности у ровень значимости равен α = 1 – 0,95 = 0,05. Этот уровень значимости считается заданным. В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0 и а1 вычисляется у ровень его значимости αр, который указан в результативной таблице (табл. 2.7 термин "Р- значение "). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр, меньше заданного уровня значимости α = 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным. Примечание. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0. В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен. Если незначимым (случайным) является коэффициент регрессии а1, то взаимосвязь между признаками X и Y в принципе не может аппроксимироваться линейной моделью. Вывод: Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр =0,12 Так как он больше заданного уровня значимости α =0,05, то коэффициент а0 признается случайным. Для коэффициента регрессии а1 рассчитанный уровень значимости есть αр =1, 09 Так как он больше заданного уровня значимости α =0,05, то коэффициент а1 признается случайным 5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р = 0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.
Таблица 2.9
Дата добавления: 2014-12-24; Просмотров: 543; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |