Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Список использованных источников 4 страница




Следующий шаг после получения анкет - занесение ответов в файл данных. Предположим, в ответах упоминалось 50 различных напитков. Вы могли бы, конечно, создать 50 переменных - одну для каждого напитка, рассмотреть респондентов как наблюдения (строки таблицы), ввести код 1 для респондента и переменной, если он предпочитают данный напиток (0, если нет); например:

  КОКА-КОЛА ПЕПСИ СПРАЙТ ....
наблюдение 1 наблюдение 2 наблюдение 3... 0 1 0... 1 1 0... 0 0 1...  


Такой метод кодирования откликов, т.е. приписывания им конкретных значений, очевидно, "расточителен". Заметим, что каждый респондент дает максимум 3 ответа; однако для кодирования используется 50 переменных. (Если вы интересуетесь только тремя напитками, то такой метод кодирования будет успешным. Чтобы табулировать предпочтения в выборе напитка, следует рассмотреть 3 переменные, как одну многомерную дихотомию; см. ниже.)

Кодирование многомерных откликов. Более разумным является следующий подход. Введите 3 переменные и определите схему кодирования для 50 напитков. Затем введите соответствующие коды (альфа метки) для значений переменных и получите таблицу следующего вида.

  Ответ 1 Ответ 2 Ответ 3
наблюдение 1 наблюдение 2 наблюдение 3... КОКА-КОЛА СПРАЙТ ПЕРЬЕ... ПЕПСИ ФАНТА 7 АП... ДЖОЛТ ДОКТОР ПЕППЕР ОРАНЖ...


Теперь, чтобы получить число респондентов, предпочитающих определенный напиток, рассмотрите переменные Ответ 1 - Ответ 3 как переменную с многомерным откликом. Таблица значений такой переменной имеет вид:

N=500 Категория Частота Процент ответов Процент наблюдений
КОЛА: Кока Кола ПЕПСИ: Пепси Кола СПРАЙТ: Спрайт ПЕППЕР: Доктор Пеппер...:.... 44 43 81 74.. 5.23 5.11 9.62 8.79... 8.80 8.60 16.20 14.80...
    100.00 168.40

Интерпретация таблиц частот с многомерными откликами. Итак, общее число респондентов в опросе n=500. Заметьте, что числа в первой колонке таблицы не составляют в сумме 500, как можно было бы ожидать, а равны 842. Вы поймете, почему это так, если вспомните, что каждый респондент может дать несколько ответов. Возвращаясь к примеру, видим, что первое наблюдение (Кола, Пепси, Джолт) "дает" три вклада в таблицу частот: в категорию Кола, в категорию Пепси и в категорию Джолт. Второй и третий столбцы таблицы содержат проценты относительного числа ответов (второй столбец) и наблюдений (третий столбец). Таким образом, число 8.80 в первой строке и в последнем столбце таблицы означает, что 8.8% всех респондентов выбрали Кола первым, вторым или третьим пунктом ответа.

Многомерные дихотомии. Предположим, вас интересуют только Кола, Пепси и Спрайт. Как отмечалось, одним из способов кодирования является следующий:

  КОЛА ПЕПСИ СПРАЙТ ....
наблюдение 1 наблюдение 2 наблюдение 3... 1... 1 1... 1...  


Здесь каждая переменная используется для одного напитка. Код 1 будет введен в таблицу для переменной каждый раз, когда соответствующий респондент указал ее в своем ответе. Заметим, что каждая переменная является дихотомией, т.к. принимает только два значения: " 1 " и " не 1 " (можно ввести 1 и 0, но так обычно не делается, можно просто рассматривать 0 как пустую ячейку или пропуск). Когда табулируются такие значения, вы получите итоговую таблицу, очень похожую на ту, что была показана раньше для переменных с многомерными откликами; из нее вы можете вычислить число и процент респондентов (и ответов) для каждого напитка. Таким образом, вы компактно представили три переменные - Кола, Пепси, Спрайт одной переменной (Безалкогольные напитки) - многомерной дихотомией.

Кросстабуляция многомерных откликов и дихотомий. Все эти типы переменных можно использовать в таблицах сопряженности. Например, вы можете объединить многомерную дихотомию Безалкогольные напитки (закодированную, как описано выше) с многомерным откликом Любимая еда (со многими категориями, например, Гамбургеры, Пицца и т.д.), а также с простой группирующей переменной Пол. Как и в таблице частот для обычных переменных, в таблице частот для многомерных переменных, можно вычислить проценты и маргинальные суммы или по общему числу респондентов или по общему числу ответов (откликов). Например, рассмотрим следующего гипотетического респондента:

Пол Кола Пепси Спрайт Еда1 Еда2
женщина       РЫБА ПИЦЦА


Эта женщина назвала Кола и Пепси своими любимыми напитками, а Рыбу и Пиццу - любимыми блюдами. В полной таблице сопряженности этот респондент будет представлен следующими наборами:

  Еда ... Всего ответов
Пол Напиток ГАМБУРГЕР РЫБА ПИЦЦА ...
женщина мужчина КОЛА ПЕПСИ СПРАЙТ КОЛА ПЕПСИ СПРАЙТ   X X X X   2 2


Данный респондент учитывается в таблице 4 раза. Дополнительно, он будет считаться дважды в столбце Женщина - КОЛА маргинальных частот, если этот столбец выводится для представления общего числа откликов. Если пользователь запрашивает маргинальные суммы, вычисленные как общее число респондентов, тогда этот респондент будет учитываться только один раз.

Парная кросстабуляция переменных с многомерными откликами. Особенность процедуры табулирования многомерных переменных состоит в их попарном рассмотрении. Лучше всего показать это на простом примере. Предположим, проводится обследование нынешних и бывших домовладений респондента. Вы попросили респондента описать три последних дома, которыми он владел (включая тот, которым он владеет в данный момент). Естественно, для некоторых из респондентов нынешний дом является самым первым (до этого они не приобретали дома в частную собственность). Другие владели домами раньше. Для каждого дома респондента просят написать количество квартир и число жильцов - членов семьи. Ниже показано, как ответ одного респондента (скажем, наблюдение 112) может быть введен в файл данных:

Наблюдение Число комнат       Число жильцов      
                 


Респондент имел три дома: первый из 3-х комнат, второй также из 3-х комнат, третий из 4-х комнат. Количество членов семьи также росло: в первом доме жило 2 человека, во втором - 3, в третьем - 5.

Пусть вы хотите кросстабулировать число комнат с числом жильцов для всех респондентов (например, чтобы понять, как количество комнат связано с числом жильцов). Один из способов - создать 3 различные таблицы с двумя входами; одну таблицу для одного дома. Вы можете также рассмотреть два фактора в этом исследовании (Число комнат, Число жильцов) как переменные со многими откликами. Однако, очевидно, нет никакого смысла в приведенном примере с респондентом 112 учитывать значения 3 и 5 в ячейке Комнаты - Жильцы в таблице сопряженности (которые вы могли бы учитывать, если бы рассматривали два эти фактора как одинарные переменные с многомерными откликами). Другими словами, вы хотите игнорировать комбинацию жильцов в третьем доме с числом комнат в первом. Скорее всего, вам нужно рассматривать переменные попарно; вы хотели бы рассмотреть число комнат в первом доме вместе с числом жильцов в первом доме, число комнат во втором доме вместе с числом жильцов в нем и т.д. Так именно и происходит, когда программа выполняет парную кросстабуляцию многомерных переменных.

Заключительный комментарий. Иногда при создании сложных таблиц сопряженности с переменными - многомерными откликами и дихотомиями, возникает следующий вопрос (в ваших исследованиях): "какую дорогу выбрать" или как точно будут учитываться наблюдения в файле данных. Лучший способ проверить, как строится соответствующая таблица - рассмотреть простой пример, и по нему ясно увидеть, каким образом учитывается каждое наблюдение (какой оно вносит вклад). В примерах к разделу Кросстабуляции используется именно такой метод, для того чтобы показать, как вычисляются данные для таблиц с переменными - многомерными откликами и многомерными дихотомиями.

 

1. Гусаров В.М. Статистика: Учебное пособие для вузов. – М.: ЮНИТИ-ДАНА, 2006. – 463 с.

2. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник для вузов. – М.: Финансы и статистика, 2005. – 456 с.

3. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики: Учебник для вузов. – М.: Инфра-М, 2004. – 378 с.

4. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. – 2-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2012. – 573 с.

5. Суслов И.П. Общая теория статистики. Учебное пособие. – М.: Статистика, 2003. – 392 с.

6. Теория статистики: Учебник. Под редакцией Громыко Г.Л. – М.: ИНФРА – М, 2002. – 414 с.

 




Поделиться с друзьями:


Дата добавления: 2014-12-24; Просмотров: 407; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.