![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Средние величины и показатели вариации
План: 1. Общие понятия средних величин, их характеристика 2. Средняя арифметическая, простая и взвешенная, ее свойства 3. Структурное среднее (смотри предыдущую лекцию – мода, медиана, квартили и т.д.) 4. Степенные среднее: среднегармоническое, среднеарифметическое, порядок их определения 5. Показатели вариации, среднеквадратическое отклонение, дисперсия 6. Свойства об общих и частных средних 7. Свойства об общих и частных дисперсиях – «золотое правило» 8. Показатели ассиметрии и эксцесса 9. Определение теоретических частот при помощи критерия «хи – квадрат» и выявление соотношения эмпирического распределения к закону нормального распределения. ОБЩИЕ ПОНЯТИЯ СРЕДНИХ ВЕЛИЧИН, ИХ ХАРАКТЕРИСТИКИ. Средняя величина – обобщающая характеристика качественно однородной совокупности. Виды: 1. Среднеарифметическое 2. Среднегармоническое 3. Среднегеометрическое Самое распространенное среднее – средняя арифметическая величина. Бывает: 1. Простая обозначается как «икс» среднее. Равна сумме «икс» делить на «эн». = СУММ х/н. Применяется, когда каждый вариант встречается в совокупности один раз или одинаковое число раз. 2. Взвешенная обозначается как «икс» среднее. Равна сумме «икс» * «эм» и делить на сумму «эм». Применяется, когда каждый вариант встречается в совокупности неодинаковое число раз. Свойства: 1. Если из вариантов вычесть или прибавить какое-то число (постоянное), то среднеарифметическое уменьшится (увеличится) на это же число. Записывается: (x-c) среднее = x ср. – с 2. Если варианты уменьшить или увеличить в какое-то число раз, то среднеарифметическое уменьшится или увеличится в это же число раз: (х/к) среднее = хср./к 3. Если частоты уменьшить или увеличить в какое-то число раз, то среднее арифметическое не изменится: хм/ф ср = хмср. 4. Нулевое: сумма отклонений вариантов от средней равна нулю: СУММ (х-хср.) * м = 0. Доказательство: СУММ (х – хср) * м = СУММ хм – СУММ хм/СУММ м*СУММ м = 0 5. Минимальное: сумма квадрата отклонений вариантов от средней минимальна: СУММ (х – хср)2*м – мин. Или СУММ(х-хср)*м меньше СУММ(х-сонст)2*м при хср не равном сонст. Доказательство: СУММ (х – сонст)2*м, вводим +-хср., СУММ [(х-хср) + (хср-сонст)]2*м = СУММ(х-хср)2*м + 2(хср-сонст)(СУММ х-хср) *м + (хср – сонст)2 * СУММ м ПОКАЗАТЕЛИ ВАРИАЦИИ. Для характеристики статистической совокупности недостаточно расчета средней величины, так как она не учитывает вариацию внутри распределения. Пример: первая группа сдала на 2-5, а вторая на 3,4 – и там и там среднее арифметическое – 3,5. Не показывается распределение. Вводится среднеквадратическое отклонения (сигма). Ее характеристика: 1. Является обобщающей характеристикой вариации. 2. Именованная величина, выражается в тех же единицах, что и варианты 3. Коэффициент вариации (V) (в процентах). Если он меньше или равен 40%, то вариация незначительная внутри распределения, а совокупность качественно однородна.
СРЕДНЯЯ ГАРМОНИЧЕСКАЯ И СРЕДНЯЯ АРИФМЕТИЧЕСКАЯ. На практике не всегда можно применять формулу средней арифметической величины, так как отсутствуют все исходные данные. Например: в розничная торговля ведется стоимостной учет выпущенной продукции и отсутствуют данные о натуральных показателях: штуки, килограммы, метры. Поэтому для расчета средней цены применяется средняя гармоническая величина. Средняя гармоническая = СУММ М/СУММ (М/х), где М = х*м, а х = М/м: Правило определения формы средней: 1. Если по неявной форме средней дан числитель, то средний определяется по формуле средней гармонической 2. Если по неявной форме средней дан знаменатель, то среднее определяется по формуле средней арифметической Задача: найти среднюю выработку рабочих по заводу по следующим данным:
Средняя выработка одного рабочего = выпуск продукции/число рабочих. В данном случае это будет вариантом «икс» - х. Выпуск продукции – производная величина, обозначается М.
Найти среднюю урожайность каждого поля
Обратная задача:
Показатель (3-ий) формы ассиметрии – As =(хсреднее – мода)/ сигму. · Если показатель положительный – правосторонняя асимметрия · Если отрицательный – левосторонняя асимметрия Четвертая формула ассиметрии не показывает направление зависимости, а измеряет степень существенности асимметрии. Формула: модуль As/ сигму по As, где As = Мю3/ сигма3, где мю – центральный момент третьего порядка и Мю3 = СУММ (х – хср)3 * м / СУММ м. По нашей таблице: 911607,6/200 = 4558,038 – мю3 As = 4558,038/26,53 = 0,24 – асимметрия. среднеквадратическая ошибка асимметрии (сигма по As) = Корень из (сигма (н-1)/(н+1)(н+3)) = 0,171 = 1,4 – в нашем случае асимметрия несущественная и ее наличие объясняется влияние случайных обстоятельств. Теперь по 4-ой формуле: модуль из 0,24/ 0,171. Вывод: если дробь меньше трех, то асимметрия несущественна, ее наличие объясняется влиянием случайных обстоятельств. Если эта дробь больше трех, то асимметрия существенна и распределение признака в генеральной совокупности не является симметричным. ЭКСЦЕСС. Показатель, который учитывает высоковершинность или плосковершинность распределения. Обозначается буквой Е = Мю4 / сигму4 – 3, где мю 4-ого порядка = СУММ (х – хср)4*м/СУММ м По нашей таблице: 1447726,648 – мю 4-го порядка Е = 1447726,648/26,54 (493155,063) – 3 = -0,06. Вывод: если Е положительное, то наблюдается высоковершинное распределение, если отрицательное – плоское или низковершинное. СВОЙСТВА ОБ ОБЩИХ И ЧАСТНЫХ СРЕДНИХ. Каждый район – частная совокупность. Среднее общее = СУММ частных средних взвешенных по объемам частных совокупностей. Формула: СУММ xini/СУММ ni Расчет общих средних, общих и частных дисперсий (по 8 таблице в учебнике).
Правило трех сигм – «золотое правило». Общая дисперсия (сигма в квадрате общая) = средняя из частных дисперсий + межгрупповая дисперсия. Средняя из частных дисперсий показывает, как в среднем изменяются варианты внутри частных групп. Она равна (СУММ частных дисперсий * ni)/СУММ ni По данной таблице: Средняя из частных дисперсий = 1,08/45 = 0,024. Коэффициент вариации = корень из средней из частных дисперсий / 3,36 * 100% = 4,61% - (меньше 40%). Коэффициент вариации из межгрупповой дисперсии = корень из 0,619/3,36 = 7,404% - (меньше 40%) Общая дисперсия = 0,024 + 0,0619 = 0,0859. Коэффициент вариации из общей дисперсии = корень из 0,0859/3,36 = 8,72% - незначительная вариация между распределениями и совокупность качественно однородная. ОПРЕДЕЛЕНИЕ ТЕОРЕТИЧЕСКИХ ЧАСТОТ ДЛЯ ИЗУЧЕНИЯ СООТВЕТСТВИИ ЭМПИРИЧЕСКИХ ЧАСТОТ С ТЕОРЕТИЧЕСКИМИ. Нормальное распределение характеризуется такими характеристиками: мат. Ожиданием (по статистике, среднее арифметическое) и дисперсия. Если распределение теоретических частот близко к нормальному распределению (то есть к распределению теоретических частот, то хср. и сигма являются объективными характеристиками данного распределения). Для этого нужно найти теоретические частоты. Пирсен изучил эти вопросы и приравнял теоретическую частоту: mt = n*i/сигма * 4(t), где 4(t) – плотность вероятности, а n*i/сигма – константа. В нашем случае= 200*20/26,5 = 150,94 – постоянная величина. T(стандартное отклонение) = x-x-/сигму. В нашем случае: 0,0219. У нас 1-е число -2,411, берем в таблице 2,4 и сверху 11 На пересечении 0,0219 (для первой строчки). Так находим по каждому интервалу. Потом каждую полученную величину умножаем на константу 150,94. 17-я колонка: 1-16 (первая минус 16-я). 16-я колонка – это округленная пятнадцатая. Пирсен сравнивал хи квадрат расчетное с хи квадрат теоретическое. В нашем случае хи квадрат расчетное равно 4,8. Хи квадрат теоретическое – с заданной вероятностью (как правило 0,95 и числом степеней свободы к=nгр -3, где nгр –число групп (интервалов). В нашем случае к = 5. Значение верхнего альфа хи квадрат в зависимости от вероятности числа степеней свободы. В нашем случае чаще всего встречается 0,95, поэтому в нашем случае, с вероятностью 0,95 и к=5 хи квадрат теоретическое равно 11,1 (по 2-ой таблице). Если хи квадрат расчетное меньше хи квадрат теоретическое (табличное), то гипотеза о близости распределения рабочих по выработке закона нормального распределения не отвергается. А если будет больше, то отвергается. Вывод: дисперсия и мат. ожидание являются объективными характеристиками для данного распределения, если эмпирическое распределение близко к теоретическому, так как mt – нормальное распределение, которое характеризуется средней и среднеквадратическим отклонением.
Дата добавления: 2014-12-24; Просмотров: 544; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |