Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Безразмерные характеристики




Расчёт теплообменных аппаратов с использованием метода безразмерных характеристик

Метод безразмерных характеристик, предложенный В.М. Кейсом и А.Л. Лондоном [1], основывается на использовании безразмерных характеристик – эффективности теплообменника () и безразмерного числа единиц переноса тепла (NTU). По сравнению с традиционным методом расчёта теплообменных аппаратов, использующим величину среднелогарифмического температурного напора Δtср, метод безразмерных характеристик имеет преимущества при выполнении поверочного расчёта, так как позволяет по аналитическим зависимостям определять сразу конечные температуры теплоносителей, не прибегая к большому числу приближений.

Результаты расчёта большого числа теплообменных аппаратов с различными схемами движения теплоносителей представлены в монографии [1] как в виде аналитических зависимостей, так и в табличной и графической формах.

 

Эффективность теплообменника, согласно [1], определяется выражением:

, (3.1)

где – максимально возможное количество тепла, которое может быть передано в идеальном противоточном теплообменнике с бесконечно большой теплопередающей поверхностью, кВт;

– водяные эквиваленты горячего и холодного теплоносителей соответственно, кДж/ ºС;

– наименьшее значение водяного эквивалента из величин .

Пренебрегая зависимостью теплоёмкостей теплоносителей от температуры, выражения для определения эффективности теплообменника принимают вид:

, при ; (3.2)

, при . (3.3)

При проведении поверочного расчёта значения температур теплоносителей на выходе из теплообменника и подлежат определению из уравнений (3.2), (3.3).

Следующей безразмерной характеристикой, определяющей возможности передачи тепла от одного теплоносителя к другому, является безразмерное число единиц переноса тепла , определяемое по формуле:

, (3.4)

где – коэффициент теплопередачи, Вт/м2·ºС;

– поверхность теплообмена, м2.

Число единиц переноса теплоты позволяет оценить возможности достижения больших значений эффективности с учётом капитальных затрат, массы и объёма для данной поверхности теплообмена, а также с точки зрения затрат энергии на преодоление гидравлического сопротивления при повышении коэффициента теплопередачи.

Для нахождения значения эффективности теплообменного аппарата используют аналитические зависимости вида:

. (3.5)

Получим вид функциональной зависимости для противоточного теплообменника. Предположим, что , т.е. .

Исходя из баланса энергии, получаем:

, (3.6)

или

. (3.7)

Решая совместно уравнение (3.7) и уравнение теплопередачи

,

получаем:

. (3.8)

Интегрирование этого выражения в пределах поверхности нагрева теплообменника приводит к уравнению:

. (3.9)

Температурные условия в противоточном теплообменнике с схематически представлены на рис. 3.1.

Рабочая линия, выражающая зависимость от имеет наклон

. (3.10)

Кроме того, m для принятого условия . Рабочая линия нанесена на рис. 3.2. Там же нанесена линия, соответствующая тепловому равновесию между двумя потоками, когда .

Из графика следует, что разность между двумя линиями, определённая в данной точке с координатами , должна быть равна , что вытекает из зависимости температурных условий от величины поверхности теплопередачи (рис. 3.1).

Из определения эффективности следует следующее выражение:

.

 

Рис. 3.1 Характер изменения температур для противотока при

 

Рис. 3.2 График «рабочая линия – линия равновесия»
для противотока при <

 

При рассмотрении графика «рабочая линия – линия равновесия» можно обнаружить, что

;

.

Таким образом,

. (3.11)

Решая совместно уравнения (3.9) и (3.11), получаем окончательно выражение для эффективности противоточного теплообменника:

. (3.12)

По этому уравнению построен график (рис. 3.3).

Рис. 3.3 Характеристика противоточного теплообменника

 

Анализируя зависимость , можно сделать вывод о том, что меньшее соотношение водяных эквивалентов теплоносителей позволяет получить большую эффективность при заданном значении NTU.

Рассмотрим два предельных случая уравнения (3.12).

Если в процессе передачи тепла одна из жидкостей имеет постоянную температуру (происходит процесс кипения жидкости или конденсации насыщенного пара), то ее водяной эквивалент бесконечно велик, т.е. и при этом

. (3.13)

Если , т.е. , то уравнение (3.12) принимает вид:

. (3.14)

В случае прямоточного движения теплоносителей эффективность теплообменника рассчитывается по выражению

. (3.15)

На рис. 3.4 представлена характеристика прямоточного теплообменника.

Рис. 3.4 Характеристика прямоточного теплообменника

 

Из анализа уравнения (3.15) следует, что эффективность прямоточного теплообменника совпадает с эффективностью противоточного теплообменника при . Для другого предельного случая эффективность прямоточного теплообменника составляет лишь 50 % её значения для противотока. При этом уравнение (3.15) приводится к следующему виду:

. (3.16)

В работе [1] приведены аналитические выражения для определения эффективности теплообменников, имеющих более сложные схемы движения теплоносителей.




Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 2921; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.