КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Аппараты управления, регулирования и автоматики
Основные парамаетра АВН. Важнейшим параметром всех АВН является номинальное напряжение. Под номинальным напряжением аппарата понимается номинальное линейное напряжение трехфазной системы, в которой аппарат должен работать. К АВН относятся аппараты с номинальным напряжением 3 кВ и выше. Номинальные напряжения АВН переменного тока определены ГОСТ 1516.1-76. Для компенсации падения напряжения в сети и в обмотках источников энергии напряжение на зажимах источников поддерживается несколько выше номинального. В связи с этим вводится наибольшее рабочее напряжение UН.Раб при котором аппарат может работать сколь угодно длительно. Это напряжение на 5—20 % выше номинального. Номинальное напряжение определяет электрическую изоляцию аппарата. В связи с тем что при работе электроустановок возникают коммутационные и атмосферные перенапряжения, изоляция аппарата подвергается большим нагрузкам. Ее прочность регламентируется испытательным напряжением промышленной частоты и импульсным испытательным напряжением (ГОСТ 1516.1-76). Эти напряжения не должны приводить к пробою внутренней и внешней изоляции АВН. Для АВН, которые в процессе эксплуатации обтекаются током нагрузки, важным параметром является номинальный ток. Согласно ГОСТ 687-78 устанавливаются следующие номинальные токи: 200, 400, 630, 800, 1000, 1250, 1600,1 2000, 2500, 3150, 4000, 5000, 6300, 8000, 10000, 12500, 16 000, 20 000, 25 000, 31 500 А. Требования по нагреву АВН изложены в ГОСТ 8024-69. При КЗ АВН обтекаются током КЗ, который в 10— 20 раз больше номинального. При этом токоведущая часть аппарата подвергается большим тепловым и механическим нагрузкам. Для характеристики АВН при больших токах вводятся понятия — термическая и электродинамическая стойкости. Термическая стойкость выражается либо током в килоамперах, либо кратностью nt = It/Iном.. Эта стойкость относится к определенному времени t (1—5 с). Электродинамическая стойкость определяется ударным током, который аппарат может выдержать без повреждений, препятствующих его нормальной работе. Электродинамическая стойкость может выражаться либо амплитудой ударного тока, кА, iуд=kуд/√2∙IK, либо кратностью этого тока относительно номинального значения nД=Iуд/Iном√2 В аппаратах, имеющих разъемные контакты, вводится понятие стойкости при сквозных токах КЗ. Это токи электродинамической и термической стойкости, которые может выдержать без повреждений аппарат при номинальных нажатиях в разъемных контактах (полное включенное положение аппарата). Автоматические электромагнитные выключатели (автоматы). Этот вид ЭА находит основное применение в системах распределения электроэнергии. Автоматы предназначены для включения и выключения цепей постоянного и переменного тока на напряжения до 1000 В и автоматической защиты цепей от коротких замыкании и токов перегрузки. Широкое практическое применение автоматических выключателей началось в 20-х годах, когда электроэнергию стали интенсивно использовать в промышленном производстве. Первые отечественные автоматы начали разрабатывать в 1923 г. Б.Ф. Вашур, Д.Л. Ступель и К.Н. Петров. В 30-х годах была разработана серия отечественных универсальных автоматических выключателей типов А2000—А2050 на токи от 200 до 1500 А. Для защиты ртутных выпрямителей и генераторов постоянного тока А.И. Голубевым в 1936г. была разработана оригинальная конструкция быстродействующего автомата типа ВАБ-2. В дальнейшем конструктивные решения А.И. Голубева были положены в основу серии быстродействующих выключателей, освоенной заводом «Уралэлектроаппарат». Основным направлением развития автоматов являлось совершенствование их защитных устройств, обеспечивающих срабатывание при заданных временных параметрах. В настоящее время в автоматах широко используются достижения совре менной электроники, в частности микропроцессорная техника. Контакторы. Для автоматизации электропривода и управления распределением энергии по разным потребителям широко используются контакторы, которые являются одним из наиболее распространенных видов ЗА. Контакторы существенно отличаются от автоматов большим числом срабатываний за период эксплуатации, что обусловливает высокие требования к механической и электрической стойкости их контактной системы. Первые контакторы начали выпускаться фирмами АЕГ и «Вестингауз» в начале XX века. Отечественная промышленность наладила серийный выпуск контакторов в 30-х годах (серии КП-900 и КТ), В послевоенный период на Чебоксарском электроаппаратном заводе были освоены серии К11-500 постоянного тока и КТП-500 переменного тока на токи от 50 до 100 А. Эти серии контакторов отличались высокими технико-экономическими характеристиками, в частности, их механическая износостойкость была доведена до 20 млн включений за счет уменьшения вибраций контактов, сокращения времени горения дуги, улучшения магнитной системы и кинематики подвижных частей. Общий вид контактора серии КП-500 приведен на рис. 6.13. Совершенствование контакторов происходило в направлении уменьшения их габаритов, повышения быстродействия и увеличения срока службы. Для повышения электрической износостойкости контактов были проведены работы по ограничению дугообразования в контакторе. Рис. 6.13. Контактор типа КП-500 на ток 300 А Один из способов реализации этого направления связан с синхронизацией процессов перехода тока через нуль и началом размыкания контактов, Подобные работы для выключателей высокого напряжения проводились в 50-х годах Г.И. Ата бековым и Г.В. Буткевичсм. Теоретические основы физических явлений, связанных с восстановлением электрической прочности между контактами, успешно развивались И.С. Таевым, который внес большой вклад в развитие отечественных контакторов. Развитие силовой полупроводниковой техники создало новую возможность для реализации методов ограничения дугообразования за счет интеграции силовых диодов и тиристо ров с электромеханическими контактами. Первые образцы подобных отечественных аппаратов были разработаны в 60-х годах Г.В. Могилевским, А.Г. Сосковым и другими специалистами. Такие аппараты позволили существенно ограничить процесс дугообразования и улучшить технико-экономические показатели контакторов. Поскольку такие контакторы объединяют электромеханические и силовые полупроводниковые ключи, они получили название гибридных контакторов.
Дата добавления: 2014-12-25; Просмотров: 984; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |