КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Законы эфирной среды
Принимая элементарную частицу эфира идеально круглой, идеально скользкой, идеально упругой, обладающей инерцией и не испытывающей никаких иных взаимодействий с другими такими же частицами, кроме отталкивания, мы заключили, что, во-первых, среда, собранная из таких частиц, будет вести себя как жидкость, и во-вторых, она будет обладать идеальными свойствами: такая жидкость малоинерционна, не имеет никакой вязкости и, следовательно, никакого сопротивления течению, кроме лобового столкновения, и может быть поэтому охарактеризована как сверхтекучая. На такую жидкость распространяется общеизвестные законы гидравлики, основанные на классической механике в чистом виде. Для сравнения скажем, что в атомарно-молекулярном мире законы механики в чистом виде практически не действуют: каждый раз приходится учитывать множество поправок. Взять, например, ускорение свободного падения: согласно классической механики такие разные тела, как камень и пушинка, должны были бы падать с равной скоростью, однако на самом деле этого не происходит. Или другой пример: движущееся тело всегда останавливается, несмотря на инерционное стремление продолжать своё движение. У жидкостей наличие вязкости, то есть прилипания атомов и молекул друг к другу, искажает теоретический процесс течения настолько, что в практических расчётах используют только эмпирические зависимости. Получается так, что классики науки о механике испытывали мучения в раскрытии законов Природы только потому, что имели дело не о первородной эфирной средой, а со средой атомарно-молекулярной, и, разгребая её, доходили до такого уровня, на котором механика представлялась им в виде простейшей математики; это как раз тот уровень, где этой математике соответствует простейший эфир. И никакой иной механики, кроме классической, для описания эфирной среды и микромира вообще не требуется. Инерция (инертность) в ряду факторов механики стоит на первом месте. Это такое загадочное свойство вещества, которое признано как факт, но не объяснено, и мало надежд на то, что кто-нибудь когда-либо сможет это сделать. Первый закон механики гласит: всякое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выводит его из этого состояния; в этом проявляется инерция или, другими словами, стремление к сохранению механического состояния. Применительно к эфиру, точнее — к эфирному шарику, приведённое определение инерции нуждается в некотором изменении. Элементарная эфирная частица, как уже говорилось, зажатая со всех сторон другими такими же частицами, не может быть охарактеризована как находящаяся в покое или в равномерном прямолинейном движении: и то, и другое оценивается выбранной системой координат и является субъективной характеристикой. Одно и то же состояние эфирного шарика может рассматриваться как покой и как равномерное движение в зависимости от выбранной нами системы отсчёта; от этого же зависит определение прямолинейности движения: среди эфирных шариков нет опорных плоскостей и прямых линий (из чего бы они состояли?), и даже луч света, представляющий собой мятущиеся туда-сюда эфирные частицы, не может быть использован в качестве таковых. В нашем случае лучше сказать так: инерция эфирного шарика выражается в том, что он может испытывать неуравновешенное воздействие соседних шариков, то есть упругая деформация шарика с одной стороны может отличаться в тот же момент от деформации с противоположной. Инерцию, как свойство, правильнее было бы называть инертностью, а инерция — это уже мера инертности, то есть физическая величина, имеющая размерность; размерностью инерции является килограмм. Будем помнить. Что в эфирной физике инерция не имеет ничего общего с гравитацией; у последней – совсем другая размерность - метры кубические. Гравитация это такой параметр, который определяет тяготение атомарных тел к центру гравитации; и природа тяготения – не притяжение, а выталкивание. К этому вопросу мы ещё вернёмся, а пока сосредоточим своё внимание на инерции. Второй закон механики устанавливает соотношение между силой, действующей на тело, его инерцией и его ускорением. В окружающей нас действительности в отношении тел, с которыми мы имеем дело, этот закон нуждается в серьёзных поправках, и мы уже говорили об этом. Попробуйте сами толкнуть шкаф и посмотрите, какое ускорение он при этом получит. Если вам не нравится такой грубый опыт, то толкните лодку, но не строго направленно, а случайно, и попробуйте предсказать её поведение — ничего не получится. И только в эфирной среде Второй закон механики действует безукоризненно; только там не требуется никаких поправок и только там тела (шарики) могут быть представлены в виде точек с сосредоточенными в них массами. Что касается Третьего закона механики, гласящего, что два тела действуют друг на друга одинаково, то он справедлив везде: и в атомарном мире, и в эфире, — и его универсальность, скорее всего, — философская. Разве не им руководствуется, не ведая того, зажатый в общественном транспорте пассажир, когда урезонивает привередливого соседа: “Я на вас давлю также, как и вы на меня”? В эфирной среде в идеальном виде предстаёт векторностъ механики, там справедливы законы сохранения энергии и количества движения, и там реализуются в чистом виде все следствия из законов механики, такие, например, как центробежная сила, момент инерции, законы гидравлики и другие. Для идеальной эфирной среды характерны такие её идеальные формы поведения, которые в атомарно-молекулярном мире просто невозможны. Так отсутствие какого-то ни было трения может породить ярко выраженную неустойчивость без энергетической подпитки её извне; и такое наблюдается у атомов и молекул газов: они как бы пульсируют, и эта пульсация не затухает. Стоит отметить ещё такое интересное явление, как возникновение вокруг неустойчивых атомов и молекул своих как бы изолированных тепловых полей, на которые не распространяются действия Второго закона термодинамики, гласящего, что теплота смещается от более нагретых участков к менее нагретым. В атомарно-молекулярной среде, как известно, царствуют хаотичные движения. Они хаотичны потому, что атомы и молекулы имеют неправильные геометрические формы, сильно отличающиеся от сферических, и их столкновения приводят к непредсказуемым последствиям. В их движениях “правит бал” вероятность: каждая частица, если она даже идеально упругая, но имеет неправильную форму, после получения удара от другой частицы совершает такой “кульбит”, что упругую сдачу своей обидчице нанести уже не может; её “злость” выливается на иную случайно попавшую под руку частицу. Таким образом, получая удары чаще всего со стороны более нагретого участка, каждая частица не возвращает их назад, а передаёт по законам вероятности в разные стороны, чем способствует перемещению движений, то есть теплоты, в направлении к холодному участку. Из Второго закона термодинамики следует вывод, обескураживающий учёных: согласно нему температура во Вселенной рано или поздно должна выравняться; хаос движений должен взять верх над порядком, или, как говорят сами учёные, энтропия должна достичь своего наибольшего значения; и это будет концом Жизни. Эфир тепловых полей неустойчивых атомов и молекул ведёт себя несколько иначе. Правильная, более того — идеально сферическая форма эфирных шариков исключает хаос в их движениях. Эфирный шарик может получить толчок от соседа только в направлении по прямой линии, соединяющей их центры; спружинив он отскочит — ударится в следующий ряд шариков — отскочит и от них — вернётся назад и возвратит полученный толчок в целости и сохранности, то есть в прежней величине и всё по той же прямой линии. В результате движения будут распространяться от источника радиально в виде продольных колебаний прилегающих шариков, амплитуда которых будет уменьшаться в квадратной зависимости от удаления. Указанные возмущения эфирной среды вокруг источника окажутся как бы привязанными к нему; договоримся называть такое поле возмущений стоячим тепловым полем. Оно может сохраняться как угодно долго. Это не значит, что стоячие тепловые поля - неизменны вообще; всё зависит от поведения источника колебаний. Если источник получает постоянную подпитку, то амплитуда его колебаний будет возрастать, и будет активизироваться его стоячее тепловое поле: оно будет расширять зону своих движений. И наоборот: если источник колебаний теряет свою энергию, то его стоячее тепловое поле сжимается. Равновесие удерживается только при балансе поступающей к источнику и теряемой им энергий. К слову: подпитка и потеря энергии осуществлюется через то же тепловое поле. Диапазон изменения активности стоячих тепловых полей достаточно широк, но имеет свои пределы. Если баланс энергий источника нарушается и он больше теряет, чем приобретает, то это приводит рано или поздно к успокоению источника — он прекращает свою пульсацию, — и его стоячее тепловое поле исчезает. С другой стороны, при избытке поступающей энергии источник будет увеличивать амплитуду своих колебаний и расширять зону действия своего стоячего поля, но и одновременно начнёт чаще испускать убегающие поперечные волны; в результате очень скоро наступит равновесие, но уже на новом энергетическом уровне; это — временный верхний предел активности теплового поля. Что же касается абсолютного верхнего предела, то он, скорее всего, определяется границей, за которой начинается распад источника колебаний, в частности атома. На эфирную текучую среду в полной мере распространяется такой общеизвестный закон гидравлики и пневматики, как связь давления со скоростью; он гласит: давление текущей жидкости (газа) больше в тех сечениях потока, в которых скорость его движения меньше, и наоборот, в тех сечениях, в которых скорость его движения больше, давление меньше. Этот закон является всеобъемлющим для эфирной среды, и поэтому его значение трудно переоценить. Его действие распространяется от масштабов гигантских космических завихрений типа Солнечной системы до крошечных, вроде атома и электрона. Уточним применительно к эфирной среде его формулировку: в нашем случае правильнее говорить не о связи давления со скоростью, а о влиянии движений элементарных эфирных частиц на их избыточную плотность. Это влияние является следствием наиболее общего закона — закона неравномерных деформаций эфирных шариков, который звучит так: чем больше в изолированном пространстве неравномерность деформаций каждого отдельного эфирного шарика, тем меньше суммарная деформация всех шариков. Указанное пространство изолировано в том смысле, что не получает энергию со стороны и не отдаёт её на сторону; таким же можно считать пространство с балансом энергий. Под неравномерностью деформаций будем понимать неодинаковую деформацию эфирного шарика с разных сторон. Предложенная формулировка закона позволяет, с одной стороны, конкретизировать охватываемое им явление, а с другой — исключить из сферы его действия случай с потоком параллельно движущихся эфирных шариков, в котором они полностью уравновешены (скорость в этом случае возникает как продукт выбора “не той” системы координат). Чтобы не говорить каждый раз о неравномерности деформаций шарика, заменим её более привычным понятием движения. Для этого у нас есть все основания: неравномерность деформаций говорит о неуравновешенности сил; неуравновешенные силы порождают результирующую силу; она вызывает ускорение эфирного шарика, а ускорение может быть расценено как объективно существующее движение. Все другие движения, определяемые изменением положения или скоростью изменения положения, субъективны и лучше их движениями не называть. Короче говоря, чем больше неравномерность деформаций эфирного шарика, тем больше у него движений. С учётом сказанного и того, что избыточная плотность эфира определяется степенью деформаций элементарных шариков, можно заключить, что, чем больше у них движений, тем меньше их избыточная плотность. Если теперь мы приравняем избыточную плотность к давлению (то и другое определяется степенью упругой деформации эфирных шариков), то получим рассматриваемый нами закон гидравлики, который звучит теперь так: чем больше движений эфирных шариков, тем меньше их давление. Исключение составляют так называемые антипараллельные движения, то есть встречные; в них давление не уменьшается, а наоборот, растёт, и происходит это в результате лобового столкновения эфирных шариков. Исключение возникает потому, что в данном случае нарушается принцип изолированности эфирных пространств: встречные потоки являются внешними по отношению к каждому из них, и их движения препятствуют друг другу.
Дата добавления: 2014-12-25; Просмотров: 474; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |