Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Материалов




ЭКОЛОГИЧЕСКИЕ СВОЙСТВА ТОПЛИВО-СМАЗЫВАЮЩИХ

Библиографический список

 

1. Васильева Л.С. Автомобильные эксплуатационные материалы: Учеб. для вузов / Л.С. Васильева – М.: Наука-Пресс, 2003. – 421 с.

2. Обельницкий А.М. и др. Топливо, смазочные материалы и охлаждающие жидкости. Учебник для ВУЗов по спец. «Двигатели внутреннего сгорания» / А.М. Обельницкий, Е.А. Егорушкин, Ю.Н. Чернявский; под ред. проф. А.М. Обельницкого. - М.: ИПО «Полиграм», 1995. – 272с.

3. Сафонов А.С. и др. Автомобильные автоэксплуатационные материалы / А.С. Сафонов, А.И. Ушаков, Н.Д. Юскавец. – СПб.: Гидрометиоиздат, 1998. – 233 с.

4. Анисимов И.Г. и др. Топливо, смазочные материалы, технические жидкости. Ассортимент и применение. Справочник / И.Г. Анисимов. – М.: Техинформ, 1999. – 596 с.

5. Гуреев А.А. и др. Химмотология: учебник для ВУЗов / А.А. Гуреев, И.Г. Фукс, В.Л. Лашхи. – М.: Химия, 1986. – 367 с.

6. Гуреев А.А. и др. Автомобильные эксплуатационные материалы / А.А. Гуреев, Р.Я. Иванова, Н.В. Щёголев. – М.: Транспорт, 1974. – 280 с.

7. Кириченко Н.Б. Автомобильные эксплуатационные материалы: Учеб. пособие для сред. проф. образования / Н.Б. Кириченко. – М.: Издательский центр «Академия», 2003. – 208 с.

8. Трансмиссионные масла. Пластичные смазки / Р. Балтенас, А.С. Сафонов, А.И. Ушаков, В. Шергалис. – СПб.: ООО «Издательство ДНК», 2001. – 208 с.

 

Экологические последствия использования нефтяных топлив проявляются в следующих направлениях:

1. Изменение химического состава атмосферы.

2. Загрязнение почвы и воды нефтепродуктами.

3. Токсическое последствие воздействия топлив на людей при непосредственном контакте.

4. Загрязнение воздуха городов токсичными веществами, содержащимися в отработавших газах.

5. Пожарная и взрывная опасность топлив.

Двигатели внутреннего сгорания являются основными потребителями углеводородного топлива, при сгорании которого расходуется кислород и выделяется диоксид углерода СО2 вместе с другими токсичными экологически вредными веществами. Ежегодно потребляется около 30 миллиардов тонн кислорода и выбрасывается в атмосферу свыше 50 миллиардов тонн диоксида углерода. В результате концентрация этого вещества в атмосфере Земли постоянно возрастает, что может привести к изменению соотношения между поглощённой и отражённой Землёй энергией Солнца и вызвать глобальные изменения климата.

Попадание нефтепродуктов на почву вызывает изменение её структуры, химического и микробиологического состава, а так же гидроаэрологического режима поверхностных слоёв, что, в конечном счёте, приводит к угнетению и гибели растений. Восстановление производительной способности загрязнённой почвы проходит очень медленно, например, урожайность и качества сельскохозяйственных земель восстанавливаются лишь через 5…8 лет.

При попадании нефтепродуктов в воду они растекаются, образуя тончайшую, стабильную плёнку, вплоть до мономолекулярной. Отсюда относительно небольшие количества нефтепродуктов перекрывают громадные количества воды, например, 1 тонна нефти покрывает плёнкой 10 км2 водной поверхности. Эта плёнка нарушает условия теплообмена водного бассейна с атмосферой, что влияет на климат планеты, вызывает загрязнение и гибель водной растительности и живых организмов. Разрушение таких плёнок под действием микробиологических процессов, растворения, окисления и выпадения в осадок происходит в течение длительного времени – до нескольких месяцев.

Большинство нефтепродуктов хорошо растворяется в биологических жирах и легко проникает в организм даже через неповреждённую кожу, вызывая при длительном воздействии изменение жизненно важных обменных процессов.

Токсичность топлив зависит от элементарного, группового и фракционного составов. Алканы (парафины) действуют на нервную систему как наркотики, токсичность изоалканов ниже, чем углеводородов нормального строения. Цикланы более токсичны, чем алифатические углеводороды. Наличие двойных связей увеличивает токсичность углеводородов. Токсичность смеси углеводородов выше токсичности отдельных её компонентов. Присутствие серо- и кислородосодержащих соединений усиливает токсичность нефтепродуктов.

Таким образом, с утяжеление фракционного состава, увеличением гетероорганических соединений и ростом числа компонентов в смеси токсичность топлива увеличивается. Основное токсичное воздействие оказывают пары топлив, поэтому, не смотря на более тяжёлый фракционный состав, дизельные топлива менее токсичны, чем бензины, так как их испаряемость ниже.

Входящий в состав этилированных бензинов тетраэтилсвинец является одним из сильнейших ядов, действующих на нервную систему человека через кожу, дыхательные пути и желудочно-кишечный тракт. Он обладает кумулятивным свойством – способностью постепенно накапливаться в организме человека. Особая опасность этого вещества заключается в том, что отравление обнаруживается лишь в хронической форме. Слабое отравление вызывает тошноту, головные боли, быструю утомляемость, притупление памяти и другие болезненные проявления. Накопление тетраэтилсвинца в организме свыше определённых пределов вызывает тяжёлые нервно-психические расстройства, которые могут закончиться параличом или смертельным исходом. При попадании этилированного бензина на кожу или одежду лёгкие фракции его быстро испаряются, а тетраэтилсвинец остаётся (tкипения = 2000 С) и будет проникать в организм человека. В растительных продуктах питания, культивируемых в местах использования этилированного бензина, концентрация свинца может превысить нормы, безопасные для здоровья человека.

Таким образом, наряду с поисками конструкторских решений одно из основных направлений снижения токсичности отработавших газов и нефтепродуктов заключается в подборе качества и свойств топлив и смазочных материалов.

Процесс сгорания топлива проходит в условиях, значительно отличающихся от оптимальных. Сгорание топлива ухудшают:

- предельно малое время на процесс сгорания;

- малые объёмы камеры сгорания, и, следовательно, значительные теплопотери в стенки и большое влияние пристеночного, относительно холодного слоя в газа на протекание реакции горения;

- физическая и химическая неоднородность горючей смеси;

- переменные по температуре и давлению условия сгорания, то есть работа большей частью на неустановившихся режимах.

Всё это приводит к неоднозначности хода реакции окисления топлива, его незавершённости и наличию продуктов неполного сгорания в отработавших газах. Большинство этих продуктов токсичные вещества:

- оксид углерода СО (угарный газ);

- оксиды азота NO, NO2, N2O4, N2O5, NOX;

- несгоревшие или не полностью сгоревшие углеводороды и продукты их термического разложения СnНm;

- сажа;

- оксиды серы SO2, SO3;

- альдегиды, кетоны;

- соединения свинца и другие продукты неполного окисления.

Оксид углерода является продуктом неполного окисления углерода. Он образуется в основном при горении с недостатком воздуха (a < 1), может образовываться и при a < 1, в результате диссоциации молекул СО2 при относительно высоких температурах или, наоборот, при низких температурах, достаточных для развития начальных стадий окисления углерода в СО, но недостаточных для дальнейшего окисления СО в СО2. Например, в пристеночных слоях или при сгорании сильно обеднённых смесей. В дизелях, вследствие того что они работают при больших коэффициентах избытка воздуха, содержание СО в отработавших газах сравнительно невелико, менее 0,3 %. Попадая через лёгкие в кровь человека, оксид углерода образует с гемоглобином устойчивое соединения – карбоксигемоглобин, в результате чего наступает кислородное голодание. Длительное пребывание в среде с концентрацией СО до 650 мг/м3 вызывает потерю сознание. Пребывание в среде с концентрацией более 2,5 тыс. мг/м3 приводит к острым отравлениям, последствиями которых является стойкие нарушения деятельности центральной нервной системы до смертельного исхода. При частом и длительном пребывании в среде с концентрациями СО меньше указанных возникает хроническое отравление.

Содержащиеся в отработавших газах углеводороды СnНm представляют собой смесь многих химических соединений. Основной причиной наличия углеводородов является торможение процесса дегидрогенизации, происходящее, как по всему объёму камеры сгорания, так и наиболее интенсивное в пристеночных зонах камеры сгорания. Наличие углеводородов свидетельствует о плохой организации процесса смесеобразования и сгорания или значительной недостаче воздуха в смеси. Увеличение количества углеводородов наблюдается при работе холодного двигателя, при использовании горючей смеси, находящей вблизи пределов воспламенения – очень бедной или богатой, а также при недостаточно эффективной работе системы зажигания. Углеводороды и продукты, образующиеся при их взаимодействии с веществами, содержащимися в атмосферном воздухе, оказывают многостороннее отрицательное воздействие на человека и животных. В частности, образуются вещества обладающие:

· канцерогенными, способными вызывать злокачественные опухоли;

· тератогенными, приводящими к появлению врождённых уродств;

· мутагенными, вызывающими изменение наследственности;

· эмбриотоксическими, вызывающими поражение плода

свойствами. К таким веществам относятся полициклические ароматические углеводороды, среди которых наибольшее биологическое воздействие оказывает бензапирен. Это вещество образуется в результате разложения и полимеризации тяжёлых фракций топлива и моторного масла при недостатке воздуха. При температурах свыше 9100 С бензапирен разлагается. Вследствие высокой температуры плавления – 1800 С – и кипения 3100 С – бензапирен в чистом виде практически не представляет опасности для загрязнения воздуха. Однако он адсорбируется сажевыми частицами, выбрасываемыми в виде дыма с отработавшими газами, и попадает в таком виде в атмосферу.

Альдегиды и другие продукты неполного окисления топлива образуются при нарушении процессов сгорания смеси, связанных с прекращением реакции горения на этапе образования промежуточных продуктов. Это может происходить, в частности, в зонах камеры сгорания с переобеднённой или переобогащённой рабочей смесью, на режимах запуска или прогрева двигателя.

Соединения свинца образуются в реакциях с выносителем свинецсодержащих антидетонационных присадок при сгорании этилированных бензинов. В атмосфере они присутствуют в виде аэрозолей.

Сажа является продуктом пиролиза и крекинга топлива, происходящих в результате его высокотемпературного нагрева при недостатке кислорода. Такие условия характерны для дизелей из-за температурной и концентрационной неоднородности заряда. В результате возможно соседство высокотемпературных зон горения с зонами, переобогащёнными топливом. Большая часть сажи сгорает в цилиндре и только около 1 % выбрасывается с отработавшими газами, образуя дымный выхлоп. Количество сажи зависит от способа смесеобразования. Дымность вихрекамерных и предкамерных дизелей меньше, чем у двигателей с непосредственным впрыском. Наибольшее образование сажи происходит при впрыске последних порций топлива, которые попадают не в воздух, а в высокотемпературные продукты сгорания. С утяжелением фракционного состава и увеличением соотношения углерода к водороду в топливе его склонность к сажеобразованию возрастает. Значительное влияние на образование сажи и её выделению с отработавшими газами оказывает групповой состав топлива. Склонность к образованию сажи у ароматических углеводородов в среднем в 10 раз больше, чем у олефиновых, которые в свою очередь образуют в 2 раза больше сажи, чем парафиновые. Наибольшее количество сажи дают топлива, содержащие тяжёлые ароматические углеводороды. Сажа является загрязнителем воздуха, но не обладает выраженными токсичными свойствами. Но она является переносчиком адсорбированных на её поверхности вредных веществ, например бензапирена.

Образование оксидов азота NOx непосредственно не связано с реакциями горения топлива и обусловлено процессами диссоциации и цепных реакций кислорода и азота в условиях высоких температур и давлений, при которых молекулы азота и кислорода разлагаются на атомы. Энергия активизации этой реакции достаточно велика, поэтому она может протекать лишь при высоких температурах, более 16000 С. При быстром снижении температуры происходит замораживание первоначальной концентрации NOx на уровне, близком к максимальному значению температуры. Образование оксидов азота при увеличении количества кислорода в смеси возрастает. В двигателях с принудительным воспламенением концентрация оксидов азота в отработавших газах наблюдается при коэффициенте избытка воздуха 1,02…1,08. При обеднении смеси снижается температура, при обогащении – сокращается количество кислорода; и то и другое ведёт к уменьшению образования оксидов азота. Непосредственно в зоне пламени образуется только NO и далее при наличии свободного кислорода в камере сгорания, в выпускном тракте или в атмосфере происходит образование высших оксидов азота. Локальные температуры в зонах камеры сгорания дизеля могут быть выше, чем в двигателях с принудительным воспламенением. Это приводит к увеличению концентрации NOx в их отработавших газах.

Оксиды сера SO2 и SO3 появляются в отработавших газах из-за применения топлив, недостаточно очищенных от соединений серы, которые содержались в нефти. Оксиды серы оказывают вредное влияние на живые организмы, замедляют и даже прекращают рост растительности, увеличивают заболеваемость и сокращают продолжительность жизни человека. Оксиды серы при соединении с влагой образуют серную и сернистую кислоты, вызывающие повышение кислотности атмосферы и водоёмов, интенсивную коррозию металлических конструкций, а также ускорение разрушения зданий и сооружений.

В среднем современный автомобиль в течение года эксплуатации выделяет в окружающую среду 800 кг окислов углерода, 115 кг углеводородов и 38 кг оксидов азота. Более 80 % веществ, загрязняющих атмосферу городов, дают двигатели внутреннего сгорания. Это приводит к увеличению заболеваемости людей в 1,5…2 раза.

Различают активные и пассивные методы снижения токсичных веществ в отработавших газах.

Активные методы основаны на воздействии на рабочий процесс двигателя для уменьшения образования токсичных веществ и использовании топлив, дающих при сгорании минимальное количество таких веществ. Пассивные методы основаны на нейтрализации в выпускной системе двигателя уже образовавшихся токсичных продуктов.

Оксид углерода и углеводороды являются продуктами неполного сгорания топлив, поэтому снизить их в отработавших газах можно путём обеднения рабочих смесей, введением в топливо присадок, интенсифицирующих процесс сгорания и расширяющих концентрационные пределы воспламеняемости, внедрением в конструкцию двигателя мероприятий, обеспечивающих устойчивое протекание рабочего процесса на обеднённых смесях, улучшением процессов смесеобразования. Кроме того, уменьшения токсичных отработавших газов можно за счёт использования топлив, обеспечивающих большую полноту сгорания топлива – сжатых и сжиженных газов и т.д. Работа на технически исправном автомобиле является важным условием снижения токсичности отработавших газов

К пассивным методам снижения токсичности отработавших газов относят дожигатели и каталитические нейтрализаторы, в которых продукты неполного сгорания дожигаются в присутствии катализатора или без него. В табл. 19 представлено содержание токсичных компонентов в отработавших газах бензиновых и дизельных двигателей.

Пожарная опасность топлива определяется их огнеопасностью и взрывоопасностью. Их определяют следующими показателями качества: температура вспышки, температура воспламенения и самовоспламенения, предельной концентрацией смеси паров топлива с воздухом, в пределах которой смесь взрывоопасна (верхний и нижний предел).

 

Таблица 19

 

Содержание токсичных компонентов в отработавших газах, %

Компонент Содержание компонента
Бензиновый Дизельный
Оксид углерода Оксиды азота Углеводороды Альдегиды Сажа 6,0 0,5 0,05 0,03 0,05 0,5 0,25 0,01 0,002 0,25

 

Температура вспышки зависит от фракционного состава. При прочих равных условиях эта температура тем ниже, чем больше в топливе низкокипящих углеводородов и выше давление насыщенных паров (табл. 20). Для большинства топлив температура воспламенения на 100 С выше температуры вспышки, причём чем ниже температура вспышки, тем меньше эта разница.

Возникновение в топливо-воздушной смеси взрывоопасной концентрации тем вероятнее, чем выше давление насыщенных паров и ниже температура начала кипения. Поэтому взрывоопасность бензина намного выше, чем дизельного топлива. Можно считать правилом, что горение в ёмкостях бензина или керосина обязательно сопровождается взрывом.

 

Таблица 20

 




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 614; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.034 сек.