Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Систематика элементарных частиц




 

Идея построения материального мира из элементарных, фундаментальных кирпичиков (объектов) восходит к Демокриту, к его атомной гипотезе. В настоящее время можно дать вполне определенную классификацию элементарных частиц и их взаимодействий. Вместе с частицами существуют и античастицы (впервые предсказанные теоретически великим английским физиком-теоретиком Полем Дираком в 1928 г.). Характерная особенность частиц и античастиц заключается в том, что при их взаимодействии, столкновении происходит их взаимное уничтожение - аннигиляция, сопровождающаяся образованием фотонов.

В начале XX века, точнее к началу его тридцатых годов, физикам были уже известны (кроме электрона) такие элементарные частицы, как протон, нейтрон и позитрон. Для построения атома и его ядра как неких структур вполне, казалось бы, достаточно трех частиц — протона, нейтрона и электрона. По существу, так оно и есть, ядро атома состоит из протонов и нейтронов, а электроны занимают определенные энергетические состояния вблизи ядра, которые впервые рассчитал еще в 1913 году Нильс Бор.

Но, очевидно, природа атома и элементарных частиц не такая простая, как нам этого хотелось бы. И в настоящее, время семейство элементарных частиц (с учетом очень короткоживущих — так называемых резонансов) насчитывает большее число, чем количество химических элементов в таблице Д. И. Менделеева (а их сейчас открыто 118).

Сегодня элементарные частицы подразделяют на 3 класса: адроны (адроны включают в себя барионы и мезоны, и тогда можно говорить о 4 классах частиц), лептоны и фотон.

Подразделение элементарных частиц на классы связано с видами взаимодействий, существующих в природе. Всего в природе существует 4 вида взаимодействия, и ниже они представлены по степени убывания их интенсивности.

1) Сильные взаимодействия (осуществляются только среди адронов).

2) Электромагнитные взаимодействия (осуществляются между всеми элементарными частицами, имеющими электрический заряд, и между фотонами, не имеющими электрический заряд, но являющимися переносчиками электромагнитного взаимодействия).

3) Слабые взаимодействия обуславливают медленные распады частиц с участием нейтрино. В «чистом» виде (т. е. без наложения, например, с электромагнитным взаимодействием) слабые взаимодействия существуют только у нейтрино.

4) Гравитационные взаимодействия (притяжение между любыми массами).

В начале XXI века, мы имеем достаточно четкую картину об одном, самом крупном классе элементарных частиц — классе адронов. Адроны, в свою очередь, как уже отмечалось, подразделяются на барионы и мезоны. Барионы в своем составе содержат нуклоны (это протоны и нейтроны, частицы, из которых состоят ядра атомов) и гипероны. Гиперо́н — элементарная частица, являющаяся барионом (а следовательно и адроном, и фермионом) с ненулевой странностью (то есть содержащая один или несколько s-кварков), но с нулевым очарованием и нулевой прелестью. Все адроны объединяет то, что они подвержены (или обладают?) сильному взаимодействию.

В 1961 году американский физик Мюррей Гелл-Манн и израильский - Ювал Нееман, одновременно, но независимо друг от друга предложили унитарную систематику. Эта система группировала адроны и мезоны в мультиплеты по 8, 10, 18 и 27 частиц. Частицы каждого мультиплета считались в таком случае различными состояниями одной и той же элементарной частицы.

Три года спустя, в 1964 г., появилась гипотеза о кварках как самых фундаментальных частиц материи или элементов праматерии. Гипотеза эта была высказана и обоснована все тем же Гелл-Манном и независимо от него Дж. Цвейгом. В гипотезе Гелл-Манна и Цвейга все барионы могут быть составлены из трех различных кварков, а мезоны из двух — кварка и антикварка. Обозначим символом q кварк, В — барион, М — мезон. Тогда B = (qqq), М= (qq*), q* — антикварк.

Знание характеристик адронов позволяет осуществить их классификацию и соответствующую классификацию кварков. Из принятой структуры барионов В a (qqq) следует, что каждому кварку нужно приписать барионное число В = +1/3 (соответственно, антикварку — В = - 1/3). Электрические заряды кварков оказываются дробными.

Сейчас физики предполагают существование 6 типов («ароматов») кварков. Первая тройка кварков — u, d, s (соответственно от слов up — верхний, down — нижний, strange — странный. Потом очарованный (с (charm)), t (top) –истинный и красивый (b (beauty)). Электрический заряд Q у u-кварка равен +2/3, у d- и s-квар-ков Q = -1/3 заряда электрона.

Немного позднее, после того как уже появилась гипотеза кварков, в 1965 году, было высказано предположение, что каждый из кварков может быть представлен тремя разновидностями, различающимися особой характеристикой, названной «цветом». Итак, если в природе существует 6 разновидностей кварков и у каждого из них могут быть 3 «цвета», то получается всего 18 разновидностей кварков и столько же антикварков.

В целом адроны являются бесцветными образованиями, в отличие от кварков, несущих цвет. Цвета, которыми обладают кварки, могут быть названы (условно) красный, желтый и синий. Антикварки тоже обладают цветом, есть также три разновидности их цвета — фиолетовый, оранжевый, зеленый. Таким образом, любой известный адрон (барион или мезон) может быть построен сочетанием из 6-ти кварков и антикварков различных цветов.

d – нижний

u – верхний

s – странный

c – очарованный

b – прелестный

t – истинный

Для понимания механизма связи кварков в адроны главное значение имеет вопрос о характере сил или взаимодействий между кварками. Как установила квантовая хромодинамика (наука, изучающая этот круг явлений), взаимодействие между кварками осуществляется глюонами (от англ. glue — клей), виртуальными частицами, которыми обмениваются кварки между собой. Причем разновидностей глюонов может быть восемь. Характер взаимодействия между кварками таков, что с увеличением расстояния между ними обменные силы не уменьшаются, а, наоборот, увеличиваются! Чем ближе кварки друг к другу, тем они свободнее!

Именно по этой причине или природе, в свободном состоянии не обнаружен ни один кварк, хотя уже более сорока лет ученые не сомневаются в их существовании. Экспериментальным путем установлено, что удерживающий потенциал кварка внутри адрона линейно зависит от расстояния, и, чтобы оторвать кварк от адрона, нужно затратить бесконечно большую энергию.

Как об этом упоминалось ранее, другие элементарные частицы — лептоны, не подвержены сильному взаимодействию, они испытывают только электромагнитное и слабое взаимодействия.

Интересно напомнить еще раз, что кварков в свободном состоянии не обнаружено, а, согласно квантовой хромодинамике, в свободном состоянии их и не может быть (таково современное состояние дел в физике элементарных частиц!). Вся необычность свойств объектов микромира. Изменять и наше, как правило, классическое мышление, на новое, неклассическое восприятие мира.

Резюме

1) В природе существует множество элементарных частиц, большинство из которых являются нестабильными.

2) Все элементарные частицы можно подразделить главным образом по основному признаку — вид взаимодействия, на 4 класса — фотон, лептоны, барионы и мезоны.

3) Частицы, обладающие сильным взаимодействием, — адроны (барионы и мезоны), состоят из 6 типов кварков. Кварки — субъядерные частицы обладающие дробным электрическим зарядом, не существуют в свободном состоянии.

4) Взаимодействие микромира имеет обменный характер, т. е. осуществляется некоторыми виртуальными частицами. Так, сильное взаимодействие между кварками осуществляется глюонами (8 разновидностей), слабое взаимодействие осуществляется векторными бозонами, электромагнитное взаимодействие — виртуальными фотонами, гравитационное взаимодействие — гравитонами.

 

 

Рис. - Стандартная модель элементарных частиц; в правой колонке — калибровочные бозоны

(три поколения материи (фермионы))

(переносчики взаимодействия)

Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома.

Ква́нтовое число́ в квантовой механике — численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы.

Некоторые квантовые числа связаны с движением в пространстве и характеризуют пространственное распределение волновой функции частицы. Это, например, главное (nr), орбитальное (l) и магнитное (m) квантовые числа электрона в атоме, которые определяются как число узлов радиальной волновой функции, значение орбитального углового момента и его проекция на заданную ось, соответственно.

Станда́ртная моде́ль — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Стандартная модель не включает в себя гравитацию. Стандартная модель состоит из следующих положений:

· Всё вещество состоит из 24 фундаментальных частиц-фермионов: 6 лептонов (электрон, мюон, тау-лептон, электронное нейтрино, мюонное нейтрино и тау-нейтрино), 6 кварков (u, d, s, c, b, t) и 12 соответствующих им античастиц, которые можно объединить в три поколения фермионов.

· Кварки участвуют в сильных, слабых и электромагнитных взаимодействиях; заряжённые лептоны (электрон, мюон, тау-лептон) — в слабых и электромагнитных; нейтрино — только в слабых взаимодействиях.

· Все три типа взаимодействий возникают как следствие постулата, что наш мир симметричен относительно трёх типов калибровочных преобразований.

Частицами-переносчиками взаимодействий являются:

· 8 глюонов для сильного взаимодействия (группа симметрии SU(3));

· 3 тяжёлых калибровочных бозона (W+, W−, Z0) для слабого взаимодействия (группа симметрии SU(2));

· один фотон для электромагнитного взаимодействия (группа симметрии U(1)).


Фундаментальные концепции постнеклассического естествознания. К проблеме постнеклассического межкультурного диалога естественных и гуманитарных наук.

Почти пятьдесят последних лет (начиная со знаменитой лекции «Две культуры и научная революция» английского писателя Чарлза Сноу в Кембридже в 1959 г.) длится диалог между гуманитариями и естественниками под знаком, если не возможного объединения, то хотя бы

проблесков понимания между естественнонаучной и гуманитарной культурами. Сноу боялся тогда, что гуманитарные науки погубят естествознание, хотя в его время опасаться этого не приходилось. (Несколько позднее советский академик, физик Е. Фейнберг дал совершенно симметричный Ч. Сноу ответ, опубликовав книгу «Две культуры. Интуиция и логика в искусстве и науке»). По большей части «физики», а не «лирики» прилагали усилия и до этого года и после него, по сближению разнесенных на полюса человеческой природой двух почти несовместимых, но сосуществующих культур.

Какие задачи и проблемы интересовали «физиков», можно понять, прочитав отрывок из авторского предисловия к книге «Законы природы» Р. Пайерлса, концептуально не утративший нисколько актуальности и сегодня, в начале XXI в.: «...В наши дни преобладания специального образования можно услышать о типе ученого или инженера, духовные интересы которого ограничены узкой областью, и в чьем образовании полностью пренебрегалось общечеловеческими ценностями, включая искусство и гуманитарные науки... Однако я уверен, что существует также другая крайность, именно человек, чье воспитание ограничивалось искусством и гуманитарными науками и чьи интересы далеки от естественных наук.Действительно, найдется достаточно много педагогов, считающих, что естественные науки не имеют большого воспитательного значения. В своих намерениях увеличить объем знаний, сообщаемых студентам на гуманитарных факультетах, они ограничиваются стремлением включить такие предметы, как историю науки, философию науки, считая их изучение делом более респектабельным, чем изучение самих естественных наук... Я не верю, чтобы изучение их было полезным, если студенты не понимают основ самих естественных наук. Это напоминает попытки преподавать историю искусства человеку, который никогда не видел ни одной картины, или теорию музыки глухому».

Ключевым понятием в диалоге культур практически на всех этапах было и остается пока понятие эволюция. Термин эволюция происходит от лат. evolvere, что означает развертываться, раскрываться (если, конечно, есть чему-то готовому, наличествующему, как мы понимаем, а не возникающему вдруг, развертываться, раскрываться!). В попытках найти

взаимоприемлемые универсальные подходы для диалога культур философы, биологи, физики, математики, социологи и др. ученые прошли несколько этапов — эволюционно-прогрессивный (Дарвин, Спенсер), эволюционно-энтропийно-катастрофический (Кювье, Клаузиус), эволюционно-космологический (Эйнштейн, Фридман, Лемэтр, Гамов), эволюционно-синергетический (Хакен), диссипативно-самоорганизующийся (Пригожин, автопоэз Матураны-Варелы), в последнюю четверть века — фрактально-скейлинговый (самоподобный) (Мандельброт).

Так вот, уже в XIX столетии, Герберт Спенсер, сразу вслед за Дарвиным, развивая механистическое учение о всеобщей эволюции, во-первых, указал на связь эволюционных процессов, протекающих в живой природе, и процессов, протекающих в обществе. Его тезис состоял в утверждении, что анализ эволюционного процесса должен дать полное описание и объяснение природы человека, его поведения и общественного сознания. Он ратовал, и это во-первых, за новые принципы эволюционирующей природы — «неустойчивость однородного», «дифференцирующая сила — творец организации» и т. д. Практически в те же годы, во-вторых, возникает и укрепляется эволюционно-катастрофическая парадигма в термодинамике Кла-узиуса: мир, как единое целое, неуклонно деградирует с ростом энтропии от максимальной организации к абсолютному хаосу (ужасающая всех тепловая смерть), и в биологии видов Кювье: образование новых живых форм принципиально исключено, и их разнообразие исторически сокращалось из-за космических, планетарных и геологических катаклизмов. Создалась ситуация, которую Илья Пригожин охарактеризовал такими словами: «Должны ли мы заключить, что Клаузиус и Дарвин не могут быть оба правы» или нам необходимо вместе с Гербертом Спенсером ввести новый принцип природы, например «неустойчивость однородного». (Сам же Пригожин, разрубив этот «гордиев узел», пришел к идее созидательного катастрофизма, через образование новых структур на основе принципа производства минимума энтропии, к теории диссипативных структурах, но это произошло много позже, уже фактически в наше время, а точнее, во второй половине XX века.)

Новый виток эволюционной парадигмы породили, в-третьих, космология, в начале прошлого века, с ее предсказанием расширения Вселенной в результате «большого взрыва», и внедренной на этой основе идеи историзма в естественные науки на всех эволюционных стадиях процессов мира. В-четвертых, этому способствовали синергетика и теория диссипативных структур, появившиеся на рубеже последней четверти ушедшего века, поскольку выявили механизмы самоорганизации, посредством которых открытые (наиболее общий универсальный вариант систем) природные системы способны спонтанно удаляться от равновесия и стабильно сохранять возникшее неравновесие с внешней средой. Немедленно модели самоорганизации оказались в центре внимания едва ли не всех наук и «овладели массами».

Вскоре обнаружилось, что социальная (включая духовную), биологическая, геологическая и космическая etc истории представляют собой стадии единого эволюционного вселенского процесса и знаменуют собой даже не неклассическое (полевое и квантовое) естествознание, а вновь народившееся постнеклассическое естествознание. Его характерный признак — движение по эволюционному пути от состояний более вероятных (с энтропийных позиций) к состояниям менее вероятным, или иначе сказать — «удаление от естества». Такой вывод — не более чем «эмпирическое обобщение» (которое, по Владимиру Вернадскому, «опирается на факты, индуктивным путем собранные, не выходя за их пределы и не заботясь о согласии или несогласии полученного вывода с другими существующими представлениями о природе...»), требующее теоретического объяснения столь удивительной направленности эволюционных процессов (и следует при этом помнить слова античного мудреца Агафона (ок. 448 — ок. 405): «Весьма вероятно наступление невероятного»). И такое теоретическое объяснение, и это, в-пятых, последовало. Но для более глубокого понимания новой гипотезы об эволюционных стадиях Вселенной, необходимо вспомнить понятие фронтальности и рассмотреть связанное с ним понятие сетевых структур природы и общества. Как мы уже отмечали в п. 12.6, открытие фрактально-сти подготавливалось в течение почти 150 лет и свершилось в виде так называемой фрактальной геометрии в 1977 году

благодаря бельгийскому математику Бенуа Мандельброту. Эта фрактальная геометрия оказалась геометрией негладких, шероховатых, шершавых, зазубренных, изъеденных «кротовыми» ходами и отверстиями пространственных объектов (описываемых, с математической точки зрения, недифференцируемыми функциями, тогда как классическая и неклассическая физика — дифференцируемыми функциями, отчего законы указанной физики сами гладкие, непрерывные, что вообще является общим, достаточно грубым приближением). Эта новая геометрия, оперирующая понятием фрактала, который, согласно Мандельброту, «называется структура (курсив наш. — Авт.), состоящая из частей, которые в каком-то смысле подобны целому», с большей точностью (чем Евклидова, Лобачевского или

Римана геометрии) описывает природные и не только природные, образования мира: облака, горы, турбулентные течения, береговые линии, дельты рек, их притоки, корни, ветки деревьев, легкие животных, кровеносную и нервную системы, поверхность коры головного мозга, его нейронную структуру, ДНК и РНК молекулы и т. д. и т. п.

Понятно, что фрактальность, и как идея, и как мыслимая и познаваемая на опыте сущность, является прямым следствием идей античных философских воззрений Анаксагора, Парменида и Зенона о единстве бытия и его целостности, поскольку каждая из них претендует на всеобщность и единство любых возможных структурных систем — естественных (природных) и гуманитарных. Поиски целостности «во всем» — задача как философская, так и естественнонаучная. Здесь мы хотим показать, что понятие фрактальности позволяют перейти на уровень количественного описания и на этой основе дать новое как качественное, так и количественное осмысление явлений и событий природы и общества.

Прежде надо убедиться, что гуманитарные системы и структуры могут быть охарактеризованы одинаковым набором характеристик. Для природных структур характерным является, как мы видели, разветвленность, сеть бифуркаций (буквально, ветвлений). Это же характерно для генеалогического древа, например, вашей семьи, которое

обязательно окажется многомерным, с непредсказуемым числом точек пересечений, вряд ли поддающимся изображению даже в данном нам трехмерном пространстве. А если таким же образом начать связывать события, происшедшие в прошлом и происходящие в настоящем, разнесенные в пространстве — какой или какими характеристиками описывать эти многообразия? Число подобных примеров и событий нашей естественной и гуманитарной жизни можно множить и множить, если не принять сразу, что она такова по самой своей сути.

Что дает или может дать понятие фрактальности в познании, например, биологических структур? Ясно, что любая биологическая структура — прежде всего живое вещество, к которому неприложимы обычные физические законы, хотя физики, начиная с Эрвина Шредингера, основателя квантовой парадигмы микромира, наряду с Максом Планком, пытаются смотреть на проблему жизни именно с физических позиций. Подобное заблуждение не дало и не даст, по понятным причинам, позитивного результата. Это происходило и происходит потому, что живая, жизненная структура, фрактальная по своей

сущности, не подчинена непрерывным, гладким физическим процессам и процедурам, происходящим в ней. Прежде всего, она управляется иначе, чем простые безжизненные структуры — она управляется особенными ценностными информационными потоками в соответствии с процедурами самоорганизации, являя собой целостный комплекс (паттерн, как его называет Ф. Капра в книге «Паутина жизни»), борющийся за свое выживание посредством негэнт-ропийного выброса переработанной и потому обесцененной (низкокачественной) энергии (см. главу 11).

Не будет большого откровения заявить, что на это способны только фрактально организованные, самоуправляющиеся структуры, какими являются все биологические организмы. Особую роль при этом играют процессы взаимоотношения фрактальных частей, взаимодействия между структурными элементами целостного комплекса, совершаемыми по

некоторым новым, пока еще не открытым законам. Но определенный успех уже есть, если в качестве комплекса взять всю историю Вселенной, обратившись к обобщенной картине эволюционных процессов в ней, от «большого взрыва» (Big Bang) до современности, в версии так называемой Мега-истории (см. п. 11.9). Проведенный профессиональными

историками анализ давал лишь качественную картину прошлого и будущего развертывания процессов вселенского, галактического, сидерического и планетарного масштабов (которые, кстати, предвидел русский философ и драматург Александр Сухово-Кобылин еще в конце XIX столетия в своей «философии Всемира»), тогда как физику А. Д. Панову удалось

установить количественные закономерности в последовательности качественных скачков (революций, бифуркаций, цивилизационных переходов) эволюции природы и общества на протяжении многих миллиардов лет!

Поскольку сегодня известны многочисленные специфические исследования эволюции конкретных сущностей, то мы располагаем некоторыми базовыми представлениями об эволюции как о фундаментальном и универсальном процессе. Их наличие создает условия

для ведения интересующего нас междисциплинарного дискурса.

Таких фундаментальных свойств (универсалий) можно выделить несколько, некоторые из них уже были упомянуты, о других скажем сейчас.

Исторически первой универсалией является знаменитая «геккель-дарвинская триада»: изменчивость — стохас-тичность (непредсказуемая случайность) и неопределенность, органически присущие природе; наследственность — зависимость настоящего и будущего от прошлого; отбор — система правил или законов, отбирающая из множества виртуальных состояний реальные состояния. Среди новых универсалий прежде всего следует указать, что природные, как правило, большие системы, по изначальной своей сущности обладают в своем развитии

принципиальной пространственно-временной необратимостью или, если угодно, «пространственно-временной стрелой», но не просто «стрелой времени» Эддингтона. Тогда второе из выделяемых нами фундаментальных свойств всех открытых больших систем — их пространственно-временная необратимость. Данное заключение основывается на общепризнанной сущности эйнштейновой относительности: все природные явления

совершаются в едином 4-мерном пространстве-времени или в мире Минковского. В отношении гуманитарных систем следует говорить об их свойстве историчности, что представляет собой своеобразный гуманитарный аналог пространственно-временной необратимости природных систем. Таким образом, принципиальное следствие обоих

аналогов этого свойства состоит в том, что как природные, так и гуманитарные открытые системы обладают прошлым, и, находясь в настоящем в каждый текущий момент времени, затем будут обладать будущим. Данная пространственно-временная (историческая) последовательность событий в силу природной абсолютности необратима, т. е. не может быть изменена какими-либо научными ухищрениями, как писал об этом М. К. Мамардашвили.

Предположение о следующем свойстве систем делается на основе надежно установленных в синергетике, как, впрочем, и в стохастической динамике, фактов, а именно, основывается на том, что динамика развития систем зависит от их состояния. Более того, будущие состояния систем находятся вне возможностей контроля и предсказания, они открыты и

неоднозначны. Все это в полной мере характеризует системы как нелинейные, так что третье фундаментальное свойство систем — нелинейность, которое, кстати, обладает тоже пространственно-временными атрибутами. В физике это подтверждают нелинейные теория

электромагнитного поля Максвелла, теория тяготения Эйнштейна, теория

сверхпроводимости, спинорная теория элементарных частиц Гейзенберга-Иваненко, явление Бенара; в химии — автокаталитическая реакция Белоусова-Жаботин-ского и многое другое в биологии, медицине, экологии.

Еще одно фундаментальное свойство систем порождается тем, что называется синергией. Синергия в прямом значении этого греческого слова понимается как кооперативное, совместное действие. Но более полно и точно синергия в современном осмыслении обозначает целостное, неразделимое, функциональное единение когерентных (родственных) по сущности составляющих систему элементов. Таким образом, четвертое фундаментальное свойство эволюционирующих самоорганизующихся систем — когерентность.

Следующее, пятое, свойство систем — свойство диссипативности или открытости, обуславливает самопроизвольное (спонтанное) образование некоторых упорядоченных пространственных или временных структур в ходе неравновесного обменного процесса веществом и энергией с окружающей внешней средой. Шредингер, исследуя проблему

возникновения жизни, красочно охарактеризовал эту ситуацию как «добывание упорядоченности из окружающей среды». Это свойство диссипативности, неразрывно связанное с неравновесностью состояния, следует распространить и на открытые гуманитарные системы, упорядоченность в которых может возрастать как в результате взаимодействия когерентных элементов внутри самой системы, так и в результате взаимодействия с другими гуманитарными системами.

Самоорганизация в системе связана с формированием структуры более сложной, чем первоначальная. Такой переход ведет к понижению симметрии. «Порядок есть нарушение симметрии» — вот образное выражение этой ситуации. Действительно, пустое пространство, например, в высшей степени симметрично — все его точки и направления эквивалентны (пространство однородно и изотропно). Порождение структуры, например, в виде гексагональных «медовых» ячеек Бенара, понижает симметрию и изменяет состояние системы. Более того, возникновение новых симметрий состояний системы или диссипативных структур (название, как уже упоминалось, дано Приго-жиным) носит

пороговый характер и связывается с неустойчивостью к флуктуациям. Уместно при этом воспользоваться понятием спонтанного нарушения симметрии в системе, впервые введенного в физике элементарных частиц. С математической точки зрения, неустойчивость и пороговый характер самоорганизации связаны с нелинейностью. Потеря системой устойчивости, ведущей к новой симметрии и, следовательно, к новой структуре самоорганизации, называется катастрофой. Более точно, катастрофа — это скачкообразное изменение, возникающее в виде внезапного ответа системы на плавное изменение внешних условий. В математике этот круг вопросов изучается теорией катастроф Тома-Арнольда. Таким образом, предрасположенность системы к спонтанному нарушению симметрии можно объяснить новым, шестым, свойством систем — катастрофичностью.

При отмеченных выше нарушениях симметрии в системе остаются неявные следы этого нарушения, своеобразная «память* о прошлом, распространяющаяся в виде волн. Наиболее тривиальный пример — упругие волны в твердом теле, которые можно трактовать как «память» о нарушении трансляционной инвариантности (симметрии) последнего. Так, если в кристалле его первый атом занял какое-то место, то остальные атомы должны располагаться эквидистантно (на одинаковых друг от друга расстояниях) в узлах решетки. Если внешняя по отношению к кристаллу сила нарушает установившийся порядок, по кристаллу начинают распространяться упругие волны. В итоге после распространения волны (возмущения) в системе возникает новая структура. Так мы приходим к понятию информации в материальной системе. Действительно, поскольку существование материи мыслится только в пространстве и времени, самосущность материи в пространстве есть ее структура, а самосущность ее во времени есть движение материи (и это основной предмет исследования в физике и химии), то изменяющаяся структура, или структура в движении, и есть информация. Здесь очевидно, что функцию носителя информации взяла на себя структура, без которой информация бессмысленна, ибо она не существует вне материи (как и материя вне информации). Это свойство, уже седьмое, рассматриваемых систем можно назвать свойством организующей информационности (или, может быть, свойством организованной информации).

Итак, суть новой обсуждаемой постнеклассической (иногда говорят, посткризисной) эволюционной парадигмы состоит в том, что в современной науке (без разделения на естественные и гуманитарные) акцент в исследованиях переносится на изучение состояний необратимости, неустойчивости, нелинейности, открытости, неравновесности, упорядоченности, симметрии, механизмов рождения и перестройки структур, самоорганизации, роли случайности и конструктивной роли хаоса, природы катастрофических революционных изменений в системах, механизмов альтернативного — исторического их развития.

То, что было указано и рассмотрено выше, далеко не все, чем располагает арсенал современного естествознания и его концептуально-понятийный аппарат, прошедший естественноисторическую тренировку. Естественнонаучные реалии начавшегося тысячелетия наиболее полно состоят в том, что совсем недавно возникли и начинают господствовать

новые научно-исследовательские программы (Ла-катос) и научные парадигмы (Кун). К ним, помимо уже упомянутых таких программ и парадигм, как синергизм и принцип подчинения (Хакен), диссипативные структуры (Пригожин), самоупорядоченность и самоорганизация (Бенар, Тейлор, Богданов, Белоусов, Жаботинский, Пригожин), автопоэз (Матурана и Варела), следует добавить новые: информация (Винер, Эшби, Шеннон) и информационная ценность (Бонгарт, Харкевич, Стратонович), распознавание образов (Бонгарт, Кронрод, Кунин, Гельфанд), симбиоз (Маргулис) и глобальный эволюционизм (Моисеев), матричные модели порождения жизни (Кольцов, Бернал, Медников, Костецкий, Голубев, Раменская, Нисбет, Дайсон, Галимов), РНК-мир (Чех, Джойс), фракталы (Жулиа, Кох, Кантор, Серпинский, Ричардсон, Ман-дельброт) и фрактальная размерность (Хаусдорф, Бези-кович, Колмогоров), временная и пространственно-временная геологическая необратимость (стрелы времени Эддингтона, Вернадского, Пригожина), обычные и странные аттракторы (Пуанкаре, Эдуард Лоренц), черные дыры (Лаплас, Снайдер, Оппенгеймер, Хокинг, Пенроуз,) (все последние структуры — аттракторы и черные дыры, как особые центры притяжения), бифуркации (центры ветвления), древесные структуры и мозаики (Пуанкаре, Кейли, Пенроуз), катастрофа (она же сборка по Тому и Арнольду), а также такие понятия и категории, как сингулярность, динамический или детерминированный хаос, суперструны (в физике высоких энергий), темная масса и темная энергия (невидимые и пока ненаблюдаемые субстанции космоса) т. д. и т. п. Донести и усвоить все это — задача «архисложная», как часто говорил наш «октябрьский» вождь, как для тех, кто стоит за университетской

кафедрой, так и для тех, кто сидит перед ней.

Многие ученые, рассматривая сложившуюся ситуацию с позиций меж- и трансдисциплинарности, убеждены, что мы, во-первых находимся на пороге новой целостности (холизма) расчлененного западноевропейской наукой мира, на пороге новой научно-исследовательской холистской программы. Исключительно важно с позиций заявленной проблемы, во-вторых, то, что многие из упомянутых концептуальных понятий, категорий, парадигм были до недавнего времени исключительно в обиходе, в основном, гуманитарного образа мышления, в настоящий момент приобретают иное, универсальное звучание. Например, гуманитарии всегда гордились своей непредсказуемостью и тем, что элементы случайности имеют очень важное значение в развитии их исследований. Благодаря познанию, хаоса теперь и естественники получили право на непредсказуемость, рассматривая влияние флуктуаций на поведение системы в точке бифуркации. Сейчас и историки и многие другие используют это понятие. Нельзя не видеть, что в современную эпоху создаются условия для возникновения некоего единого универсального метаязыка естественных и гуманитарных наук, языка их транскультурного диалога.





Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 1957; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.051 сек.