Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Повреждение клетки




Патологическая физиология [Учебник для студентов мед. вузов]
Н. Н. Зайко, Ю. В. Быць, А. В. Атаман и др. К.: "Логос", 1996

Повреждение клетки — типический патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, приводящие к нарушению структурной целостности клетки и ее функциональных способностей.

В зависимости от скорости развития и выраженности основных проявлений повреждение клетки может быть острым и хроническим. Острое повреждение развивается быстро, как правило, в результате однократного, но интенсивного повреждающего воздействия, в то время как хроническое — протекает медленно и является следствием многократных, но менее интенсивных патогенных влияний.

В зависимости от периода жизненного цикла, на который приходится действие повреждающего агента, повреждение клетки может быть митотическим и интерфазным.

В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым.

Выделяют два патогенетических варианта повреждения клеток.

1. Насильственный вариант. Развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

2. Цитопатический вариант. Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях становятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки вследствие отсутствия каких-либо необходимых ей компонентов (гипоксическое, при голодании, гиповитаминозное, нервнотрофическое, при антиоксидантной недостаточности, при генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, интенсивность возмущений, а следовательно, и функциональная активность которых в естественных условиях очень высоки (нейроны, миокардиоциты).

Этиология. Нарушения внутриклеточного гомеостаза, составляющие сущность повреждения клетки, могут возникать как в результате непосредственного воздействия на клетку патогенного агента, так и опосредованно, вследствие нарушений постоянства внутренней среды самого организма.

Непосредственное (первичное) повреждение. В зависимости от происхождения все факторы, способные при взаимодействии с клеткой вызвать ее повреждение, можно разделить на 3 группы:

1. Факторы физической природы. К ним относятся механическое воздействие, высокая и низкая температура, ультрафиолетовые лучи, ионизирующая радиация и др.

2. Факторы химического происхождения. Повреждение клетки могут вызвать неорганические вещества (кислоты, щелочи, соли тяжелых металлов), низкомолекулярные органические соединения (фенолы, альдегиды, галогенопроизводные), высокомолекулярные соединения (гидролитические ферменты, основные катионные белки, иммуноглобулины, комплексы антиген—антитело, комплемент). В настоящее время описано более 20 000 химических соединений, оказывающих повреждающее действие.

3. Факторы биологической природы. К ним относятся микроорганизмы, способные взаимодействовать с клетками организма — вирусы, бактерии, простейшие.

Опосредованное (вторичное) повреждение. Возникает как следствие первичных нарушений постоянства внутренней среды организма. К повреждению клетки приводят гипоксия, гипо- и гипертермия, ацидоз и алкалоз, гипер- и гипоосмия, гипогликемия, гиповитаминозы, повышение содержания в организме конечных продуктов метаболизма, оказывающих токсическое действие (аммиак, билирубин и др.).

Патогенез. Можно выделить 6 групп молекулярных механизмов, имеющих важное значение в патогенезе повреждения клетки: липидные, кальциевые, электролитно-осмотические, ацидотические, протеиновые и нуклеиновые.

Липидные механизмы повреждения клетки включают в себя перекисное окисление липидов, активацию мембранных фосфолипаз и детергентное действие свободных жирных кислот.

1. Перекисным окислением липидов (ПОЛ) называется свободнорадикальное окисление ненасыщенных жирных кислот, входящих в состав фосфолипидов клеточных мембран. Инициаторами ПОЛ являются свободные радикалы, среди которых наибольшее значение имеют: О2- — супероксидный анион-радикал (в водной среде находится в виде НО2); ОН — гидроксильный радикал; Н — водородный радикал; О2 — синглетный (возбужденный) кислород, у которого один из электронов перешел на более высокий энергетический уровень.

В процессе повреждения клетки возможны 2 механизма активации ПОЛ.

Первый механизм — избыточное образование первичных свободных радикалов. В такой ситуации имеющиеся в клетке антиоксидантные системы не в состоянии "потушить" реакции ПОЛ. По данному механизму происходит активация ПОЛ в случае повреждающего воздействия на клетку ультрафиолетовых лучей, ионизирующей радиации, гипероксии, некоторых ядов, в частности четыреххлористого углерода; в условиях сильного стресса (образование свободных радикалов из катехоламинов); при гипервитаминозе Д (образование свободных радикалов в результате процессов аутоокисления эргокальциферола).

Второй механизм активации ПОЛ — нарушение функционирования антиоксидантных систем клетки. В этом случае инициаторами ПОЛ являются первичные свободные радикалы, образующиеся в процессе естественно протекающего обмена веществ. Антиоксидантная недостаточность может быть обусловлена наследственными и приобретенными нарушениями синтеза антиоксидантных ферментов (супероксиддисмутазы, каталазы, глутатионпероксидазы, глутатионредуктазы); дефицитом железа, меди, селена, необходимых для функционирования этих ферментов; гиповитаминозами Е, С; нарушениями пентозного цикла и цикла Кребса, в реакциях которых образуются НАДФН и НАДН, обеспечивающие восстановление истинных и вспомогательных антиоксидантов и, наконец, действием детергентов, вследствие чего нарушается строение липидного бислоя мембран и открывается доступ свободных радикалов к обычно скрытым в гидрофобном слое ненасыщенным жирным кислотам. Независимо от механизма активации ПОЛ в клетке развиваются тяжелые изменения, связанные с нарушениями барьерной и матричной функции клеточных мембран.

2. Активация мембранных фосфолипаз. В патогенезе повреждения клетки важное значение имеет чрезмерная активация фосфолипазы А, — фермента, осуществляющего гидролитическое отщепление ненасыщенной жирной кислоты — одного из двух гидрофобных хвостов молекулы фосфолипида.

Освободившиеся под действием фосфолипазы А, ненасыщенные жирные кислоты (арахидоновая, пентаноевая и др.) расходуются на образование физиологически активных соединений — простагландинов и лейкотриенов. Оставшаяся часть молекулы фосфолипида (лизофосфолипид) имеет лишь один жирнокислотный "хвост", вследствие чего обладает способностью к мицеллообразованию и является очень сильным детергентом. С детергентным действием лизофосфолипидов и связано повреждение клеточных мембран в условиях чрезмерной активации фосфолипазы А,. Основным фактором, вызывающим такую активацию, является высокая концентрация ионов Ca в цитоплазме клетки.

3. Детергентное действие избытка свободных жирных кислот. Свободные жирные кислоты в больших концентрациях, так же как и лизофосфолипиды, оказывают детергентное действие и вызывают нарушение липидного бислоя мембран. Можно выделить четыре основных механизма повышения содержания свободных жирных кислот в клетке:

1. усиленное поступление свободных жирных кислот в клетку при гиперлипоцидемии (повышении концентрации свободных жирных кислот в крови), что наблюдается при активации липолиза в жировой ткани, в частности, при стрессе, сахарном диабете;

2. усиленное освобождение свободных жирных кислот в лизосомах из триглицеридной части липопротеидов, поступающих в клетку, что имеет место в условиях гиперлипопротеинемий, сопровождающих развитие атеросклероза;

3. усиленное освобождение свободных жирных кислот из фосфолипидов мембран под действием уже упоминавшихся мембранных фосфолипаз;

4. нарушение использования клеткой свободных жирных кислот в качестве источника энергии, что отмечается при уменьшении активности ферментов Р-окисления и цикла Кребса, а также при гипоксии. Для того чтобы предотвратить повреждающее действие избытка жирных кислот, клетка располагает системой ферментов, которые переводят свободные жирные кислоты в триглицериды. При этом наблюдается несвойственное в норме отложение последних в клетке в виде жировых капель, т. е. возникает жировая дистрофия клетки.

Описанные выше липидные механизмы повреждения приводят к нарушению двух основных функций липидного бислоя клеточных мембран: барьерной и матричной. В основе нарушения барьерной функции мембран лежат два основных механизма: ионофорный и механизм электрического пробоя. Первый из них обусловлен появлением в клетке веществ, обладающих свойствами ионофоров, т. е. соединений, способных облегчать диффузию ионов через мембрану благодаря образованию проходимых через ее слои комплексов иона и ионофора. В процессе активации перекисного окисления липидов среди промежуточных продуктов его реакций появляются вещества — ионофоры по отношению к ионам кальция и водорода, в результате чего повышается проницаемость клеточных мембран для указанных ионов. Второй механизм ("самопробой") реализуется за счет существующей на многих мембранах (плазматической, внутренней митохондриальной) разности потенциалов. В результате появления гидрофильных продуктов перекисного окисления липидов, а также вследствие детергентного действия лизофосфолипидов и избытка свободных жирных кислот нарушаются электроизолирующие свойства гидрофобного слоя клеточных мембран, уменьшается электрическая их стабильность, что приводит к электрическому пробою мембраны, т. е. к электромеханическому ее разрыву с образованием новых трансмембранных каналов ионной проводимости.

Сущность матричной функции липидного бислоя мембран состоит в том, что в нем вмонтированы мембранные ферменты и некоторые специализированные белки. В процессе перекисного окисления липидов нарушается активность мембранных ферментов в связи с изменением их липидного микроокружения, во многом определяющего свойства белковых молекул. Кроме того, в ходе реакций ПОЛ может произойти образование "сшивок" между молекулами белков и фосфолипидов, а также окисление сульфгидрильных групп активных центров, что приводит к необратимой инактивации ферментов.

Кальциевые механизмы. Целый ряд важных патогенетических механизмов повреждения клетки обусловлен повышением концентрации ионов кальция в ее цитоплазме. В основе такого повышения могут лежать 2 механизма: избыточное поступление ионов Ca в цитоплазму и нарушение удаления их из цитоплазмы.

Избыточное поступление ионизированного кальция в цитоплазму может осуществляться через неповрежденную плазматическую мембрану в случае повышения градиента его концентрации, например при гиперкальциемии. Однако гораздо чаще поступление кальция в цитоплазму усиливается в результате нарушения барьерной функции мембран, как это имеет место в условиях активации уже рассмотренных липидных механизмов повреждения клетки.

Удаление ионов Ca из цитоплазмы нарушается вследствие недостаточности трех основных кальцийтранспортирующих систем клетки:

1. Ca-насосов плазматической мембраны и эндоплазматического ретикулума;

2. Na—Ca-обменного механизма и

3. Ca-аккумулирующей функции митохондрий.

Нарушение функционирования Ca-насосов может быть связано с наследственно обусловленными и приобретенными дефектами белковых компонентов Ca-насосов, а также с уменьшением в клетке концентрации АТФ, необходимой для осуществления процессов активного транспорта. Дефицит АТФ в клетке в свою очередь закономерно возникает в условиях нарушения энергетического обмена: при недостаточности энергетических источников в клетке, при гипоксии, при уменьшении активности ферментов гликолиза и цикла Кребса, при угнетении процессов клеточного дыхания и окислительного фосфорилирования. Na—Ca-обменный механизм удаления ионизированного кальция из цитоплазмы обеспечивается энергией градиента концентраций ионов Na по обе стороны плазматической мембраны. Поэтому основной причиной нарушения Na—Ca-обмена является уменьшение указанного градиента, что происходит в условиях нарушения функции Na—К-насоса, создающего этот градиент.

Ca-аккумулирующая функция митохондрий является одним из альтернативных путей использования энергии транспорта электронов по дыхательной цепи, когда освобождающаяся энергия идет не на синтез АТФ, а на транспорт ионов Ca из цитоплазмы в митохондрии против концентрационного градиента. С учетом этого Ca-аккумулирующая функция митохондрий угнетается во всех случаях нарушения процессов транспорта электронов по дыхательной цепи.

Стойкое повышение содержания ионов Ca в цитоплазме вызывает ряд важных последствий:

1. нарушение специфических функций клетки, в осуществлении которых принимают участие ионы Ca; примером является развитие контрактуры миофибрилл мышечных клеток. При этом утрачивается способность таких клеток к расслаблению, а пересокращенные миофибриллы подвергаются разрушению под действием активированных избытком кальция протеолитических ферментов;

2. активация фосфолипазы А, (см. выше);

3. разобщение окисления и фосфорилирования.

В условиях повышения концентрации ионов Ca в цитоплазме данный эффект возникает в результате использования энергии клеточного дыхания не на синтез АТФ, а на транспорт кальция из цитоплазмы в митохондрии. Кроме того, важное значение имеет повышение проницаемости внутренней митохондриальной мембраны под влиянием фосфолипазы А2, активированной избытком ионов кальция.

Электролитно-осмотические механизмы. Электролитно-осмотические механизмы повреждения клетки обусловлены сдвигами в содержании главных клеточных катионов: Na и К. Выравнивание концентраций этих ионов по обе стороны плазматической мембраны приводит к увеличению внутриклеточной концентрации ионов Na и уменьшению концентрации ионов К в клетке. В основе указанных сдвигов могут лежать два механизма:

1) усиленная диффузия ионов через плазматическую мембрану

2) нарушение механизмов активного транспорта Na и К, обеспечивающих поддержание концентрационных градиентов указанных ионов.

Усиление диффузии ионов Na в клетку и выход ионов К из клетки могут происходить как через неповрежденную плазматическую мембрану в условиях общих нарушений водно-электролитного обмена в организме (гипернатриемия, гипокалиемия), так и при нарушении барьерной функции плазматической мембраны. Перемещение ионов Na и К в этих случаях осуществляется через имеющиеся и вновь образовавшиеся каналы ионной проводимости за счет существующих концентрационного и электрического градиентов.

Основу нарушений активного транспорта ионов Na и К через плазматическую мембрану составляет недостаточность Na—К-насосов. Главной причиной нарушений работы этих механизмов является дефицит АТФ, за счет энергии которой достигается перемещение ионов Na и К против электрохимического градиента. Поскольку основным источником АТФ для Na—К-насосов является гликолиз, то нарушения этого процесса при недостаточном поступлении глюкозы в клетку или уменьшении активности соответствующих ферментов будет приводить к рассматриваемым здесь электролитным сдвигам. Причиной нарушения функции Na—К-насосов может быть также изменение свойств липидного бислоя наружной клеточной мембраны и, в частности, увеличение содержания в нем холестерина, что наблюдается при атеросклерозе. Угнетение работы Na—К-насосов вызывается и целой группой специфических ингибиторов Na—К-АТФазы (строфантин, оубаин и др.).

Сдвиги электролитного состава клетки в процессе ее повреждения проявляются развитием ряда изменений, среди которых наиболее важными являются:

1. потеря клеткой электрического мембранного потенциала (потенциала покоя),

2. отек клетки

3. осмотическое растяжение мембран, приводящее к нарушению их барьерной функции.

Ацидотические механизмы. В основе этой группы механизмов повреждения лежит увеличение концентрации ионов водорода в клетке, т.е. внутриклеточный ацидоз.

Развитие внутриклеточного ацидоза может быть обусловлено следующими механизмами:

1. избыточным поступлением ионов водорода в клетку из внеклеточной среды, что наблюдается в условиях общих нарушений кислотно-основного гомеостаза в организме — при декомпенсированных газовом и негазовом ацидозе;

2. избыточным образованием кислых продуктов в самой клетке, что отмечается при активации гликолиза (молочная кислота), нарушениях цикла Кребса (три-и дикарбоновые кислоты), гидролитическом расщеплении фосфолипидов клеточных мембран (жирные кислоты, фосфорная кислота), усиленном распаде свободных адениновых нуклеотидов (фосфорная кислота);

3. нарушением связывания ионов водорода в результате недостаточности буферных систем клетки; и, наконец,

4. нарушением выведения ионов водорода из клетки при недостаточности Na—Н-обменного механизма цитоплазматической мембраны, а также в условиях расстройства местного кровообращения в ткани.

Повышение внутриклеточной концентрации ионов водорода приводит к развитию ряда изменений:

1. нарушению функциональных свойств белков (ферментов, сократительных и др.) в результате изменений конформации их молекул;

2. активации лизосомальных гидролитических ферментов;

3. повышению проницаемости клеточных мембран вследствие изменения жидкостного состояния мембранных липидов.

Протеиновые механизмы включают в себя:

1. ингибирование ферментов (обратимое и необратимое);

2. денатурацию — т. е. нарушение нативного строения белковых молекул в результате изменений вторичной и третичной структуры белка, обусловленных разрывом нековалентных связей, и

3. протеолиз, осуществляющийся под действием лизосомальных гидролитических ферментов (катепсинов) и Ca-активируемых протеаз.

Основу нуклеиновых механизмов повреждения клеток составляют нарушения 3 процессов: репликации ДНК, транскрипции и трансляции.

На субклеточном уровне реализация рассмотренных выше молекулярных механизмов повреждения клетки приводит к нарушению строения и функции отдельных ее органелл. Поскольку большинство из них относится к мембранным образованиям, то универсальным механизмом повреждения субклеточных структур является нарушение проницаемости и целостности клеточных мембран. Суммируя приведенные в этом разделе сведения, можно выделить 5 основных механизмов повреждения мембран:

1. перекисное окисление липидов,

2. активация фосфолипаз,

3. осмотическое растяжение мембран,

4. адсорбция белков на мембране (например, комплексов антиген—антитело),

5. изменение фазового состояния мембранных липидов (ацидоз, изменения температуры).

Повреждение цитоплазматической мембраны может проявляться нарушениями ее барьерной функции, расстройствами систем активного транспорта веществ (Na-К- и Ca-насосов, Na-Ca- и Na-H-обменных механизмов и др.); изменениями белков, образующих специфические каналы ионной проводимости; повреждением рецепторных макромолекул, воспринимающих внешние регуляторные сигналы; нарушениями белковых комплексов, осуществляющих межклеточные взаимодействия и, наконец, изменениями гликопротеидов, определяющих антигенность клетки.

Наиболее характерными проявлениями повреждения митохондрий являются эффект разобщения окисления и фосфорилирования и угнетение клеточного дыхания.

Основным патогенетическим фактором разобщения окисления и фосфорилирования является нарушение барьерной функции внутренней митохондриальной мембраны, в результате чего не может быть реализован постулированный Митчелом хемиосмотический механизм сопряжения клеточного дыхания и ресинтеза АТФ. Повышение ионной проницаемости внутренней митохондриальной мембраны делает неэффективной работу водородной "помпы", приводит к падению электрохимического градиента, энергия которого обеспечивает в норме ресинтез АТФ в определенных точках митохондриальной мембраны благодаря встроенным здесь сложным АТФ-азным комплексам. Ситуация усугубляется также и тем, что переход ионов Na и К в митохондриальный матрикс закономерно сопровождается набуханием и отеком митохондрий. Это в свою очередь приводит к растяжению митохондриальной мембраны и, как следствие, к еще большему нарушению ее барьерных функций. В результате такого "порочного круга" разобщение окисления и фосфорилирования приобретает стойкий характер.

Повреждение эндоплазматического ретикулума проявляется нарушениями свойственных ему многочисленных функций: синтетической, детоксикационной, депонирующей и др. Повреждение лизосом сопровождается выходом и активацией многочисленных гидролитических ферментов, в результате чего повреждение клетки становится необратимым, происходит ее аутолиз.

С повреждением микротрубочек и микрофиламентов могут быть связаны изменение формы клетки, нарушение ее подвижности, угнетение процессов клеточного деления.

Все многообразные защитно-компенсаторные реакции клетки в ответ на ее повреждение можно условно разделить на 2 группы:

1. направленные на восстановление нарушенного внутриклеточного гомеостаза и

2. направленные на создание функционального покоя поврежденной клетки. Первая группа включает в себя активацию механизмов активного транспорта ионов, репаративный синтез поврежденных компонентов клетки, усиленную регенерацию антиоксидантных систем и др. Непременным условием реализации этих механизмов является достаточное энергетическое обеспечение клетки. Это достигается, с одной стороны, повышением интенсивности энергетического обмена (активация гликолиза, клеточного дыхания, пентозного цикла), а с другой, перераспределением имеющихся в клетке энергетических ресурсов.

Вторая группа реакций направлена на то, чтобы устранить возможные дополнительные сдвиги внутриклеточного гомеостаза при действии физиологических нервных и гуморальных возмущающих факторов (стабилизация повреждения) и свести к минимуму энергетические траты на выполнение специфических функций клетки, обеспечив таким образом энергетические ресурсы для восстановления нарушенного гомеостаза. Примером может служить образование в поврежденной клетке простагландинов, которые ингибируют аденилатциклазу и тем самым "охраняют" клетку от действия целого ряда медиаторов и гормонов (катехоламинов, тироксина и др.). При полном дефосфорилировании АТФ образуется аденозин, который, являясь естественным блокатором кальциевых каналов плазматической мембраны, препятствует запуску Ca-опосредуемых клеточных функций. Все перечисленные изменения, направленные на создание функционального покоя поврежденной клетки, имеют двойное значение. С одной стороны, они являются защитно-компенсаторными для самой клетки, поскольку помогают ей выжить в условиях действия повреждающего агента, с другой стороны, они имеют неблагоприятное значение для организма в целом, особенно если происходят в клетках жизненно важных органов.




Поделиться с друзьями:


Дата добавления: 2014-12-25; Просмотров: 4051; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.