КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дросселирование пара
Таблицы перегретого пара Таблицы сухого насыщенного пара Для нахождения параметров сухого пара Таких таблиц было предложено несколько. В настоящее время широкой известностью пользуются таблицы Теплофизических свойств воды и водяного пара, составленные С.Л. Ривкиным и А.А. Александровым или А.А. Александровым, Б.А. Григорьевым (рис. 6.1) В издании А.А. Александрова и Б.А. Григорьева 2006 года приведены девять таблиц (табл. I – IX). В табл. I (рис. 6.2) приведены термодинамические свойства воды и водяного пара в состоянии насыщения (по температурам). В первом столбце таблицы указаны температуры пара, расположенные в порядке возрастания от 0о С до 374 о С; в остальных столбцах приведены соответствующие им значения параметров кипящей воды и сухого насыщенного пара. В табл. II (рис. 6.3) приведены термодинамические свойства воды и водяного пара в состоянии насыщения (по давлениям). В первом столбце таблицы указаны абсолютные давления пара, расположенные также в порядке их возрастания, начиная от 1,00 ∙ 103 Па и до 2,21∙ 107 Па, а в остальных столбцах приведены соответствующие им значения параметров кипящей воды и сухого насыщенного пара. В тех случаях, когда требуется найти значение какого-либо из приведенных в таблицах параметров для промежуточных значений температур и давлений, прибегают к интерполированию. Из таблиц I и II видно, что с увеличением температуры и, следовательно, давления удельный объем жидкости
Рис. 6.1. Таблица Теплофизических свойств воды и водяного пара
Рис. 6.2. Термодинамические свойства воды и водяного пара в состоянии насыщения (по температурам)
Рис. 6.3. Термодинамические свойства воды и водяного пара в состоянии насыщения (по давлениям) Интересное свойство водяных паров обнаруживается при рассмотрении характера изменения величины энтальпии в зависимости от давления пара (колонка 6 в табл. II рис. 6.3). Как видим, при давлении 1,00∙103 Па
В табл. III приведены термодинамические свойства воды и перегретого пара. По этим таблицам для заданных давлений и температур можно найти удельный объем, энтальпию и энтропию однофазной среды – воды и перегретого пара. В первом столбце указаны температуры перегретого пара, расположенные в порядке их возрастания, начиная от 0о С до 1000о С. Для каждой температуры даются значения v, i и s, расположенные в последующих столбцах при различных давлениях перегретого пара.В строках по горизонтали указаны давления начиная от 1 кПа до 100 МПа. Таким образом, эта таблица дает возможность непосредственно или интерполяцией найти значения указанных в ней параметров, не прибегая к вычислениям. По таблице IV можно определить истинную массовую изобарную теплоемкость воды и водяного пара
Рис. 6.4. Термодинамические свойства воды и перегретого пара
6.3. sT- диаграмма Для изображения в системе sT- координат процесса парообразования необходимо пользоваться такими соотношениями для этого процесса, которые были бы выражены через параметры s и Т. При построении sT- диаграммы для первой стадии парообразования – нагрева 1 кг воды от 0 оС до температуры кипения
,
в котором Т ≤ Если Т равно 273 К (т.е. 0 оС), как видно из уравнения, s = 0 и, следовательно точка, определяющая это состояние воды, должна лежать на оси ординат. Обозначим эту точку через А (рис. 6.1).
Рис. 6.1. Изображение процесса парообразования при постоянном давлении в осях sТ. Если воду подогреть до температуры, положим, Т 1, то энтропия, увеличиваясь, станет равной s 1, и состояние воды будет определяться точкой 1. Если подогреть воду больше, то температура ее будет возрастать, принимая значения Т 2, Т 3 и т. д. до температуры Состояние пара при указанных значениях температуры и энтропии будет на диаграмме определяться точками 2, 3 и т.д. точкой В. Если через все эти точки провести плавную кривую, то она будет графически изображать характер изменения энтропии при нагревании воды от 0 оС до При дальнейшем подводе теплоты вода начнет превращаться в пар, энтропия будет продолжать увеличиваться, но температура не будет изменяться, поэтому линия процесса для этой стадии парообразования изобразится в виде прямой ВС, параллельной оси абсцисс. Точка С определяет состояние, в котором вся вода превратилась в пар (состояние сухого пара). Изменение энтропии в процессе парообразования, т.е. от точки В до точки С, может быть подсчитано по уравнению
.
При дальнейшем подводе теплоты пар перейдет в область перегрева, при этом будут возрастать энтропия и температура его. Линия процесса для данной стадии парообразования CD строится по уравнению
= 2,3 lg .
Таким образом, весь процесс получения перегретого пара изобразится ломаной линией ABCD. Значение энтропии пара в точке С может быть подсчитано по уравнению
.
и ВС; следовательно,
откуда следует, что
.
Если процесс парообразования не доводить до конца, т.е. остановиться на какой-нибудь точке Е, которая будет определять состояние влажного пара степени сухости х, то изменение энтропии можно подсчитать по уравнению
.
На диаграмме
ВЕ,
откуда следует, что
.
Деля уравнение (6.9) на уравнение (6.6), получим
Следовательно, отношение Если же давление воды понизить, то момент начала кипения изобразится какой-нибудь точкой В 1, лежащей также на прямой АВ, но ниже точки В. При этом давлении состояние сухого пара изобразится точкой С 1. Беря разные значения давлений воды, получим ряд точек: В 1, В 2, В 3 и т.д., соответствующих началу кипения воды, и ряд точек: С 1, С 2, С 3 и т.д., соответствующих состоянию сухого пара. Если через эти точки провести плавные линии, то на диаграмме получатся две кривые АК и DК: первая из них будет являться кривой жидкости, разделяющей области жидкости и влажного насыщенного пара, разделяющей области влажного и перегретого паров. Как видно на чертеже, эти линии сходятся и точка пересечения их, очевидно, является критической точкой К, о которой уже говорилось раньше. Если на линиях ВС, В 1 С 1, В 2 С 2 и т.д. нанести точки Е, Е 1, Е 2, Е 3 и т.д., соответствующие какому-нибудь значению степени сухости, и провести через них плавную кривую, то получим так называемую линию постоянной степени сухости (или постоянного паросодержания) КЕ 4 .
Рис. 6.2. sT – диаграмма водяного пара (схема)
Таких линий для различных значений степени сухости можно нанести на диаграмме несколько; тогда получим ряд кривых, также сходящихся в критической точке. В sT – диаграмме площадь, ограниченная линией процесса, осью абсцисс и крайними ординатами, определяет количество теплоты, участвующей в процессе. Применим это свойство sT – диаграммы к процессу парообразования, который изобразим линией Ааbс (рис. 6.3). Процесс превращения кипящей воды в пар при этом изобразится линией ab. Согласно указанному свойству площадь прямоугольника abmn должна определять теплоту парообразования r. Действительно, для конечной точки этого процесса – точки b, когда пар превратится в сухой, значение энтропии находят по уравнению:
Откуда
Рис. 6.3. Изображение в осях sT теплоты в процессе парообразования
На рис. 6.3. значение температуры Для других стадий парообразования площадь 0 Aan определяет количество теплоты Понятно, что сумма площадей 0 Aan и nabm представляет величину полной теплоты сухого пара
6.3. s i – диаграмма
sT – диаграмма является очень наглядной при различных исследованиях, связанных с теплотой. Однако в расчетной работе эта диаграмма неудобна тем, что для нахождения по ней количества теплоты, участвующей в процессе, нужно измерять площадь. В тех случаях, когда линия процесса является кривой, это представляет некоторые затруднения. Поэтому в теплотехнических расчетах часто пользуются диаграммой, в которой по оси ординат отложены величины энтальпии, а по оси абсцисс – изменение энтропии. Для того чтобы найти величину энтальпии по такой диаграмме, а следовательно, и количество теплоты, необходимо измерить лишь длину соответствующего отрезка по оси ординат, что, конечно, гораздо проще, чем измерять площадь. Эта диаграмма получила название s i – диаграммы.
Рис. 6.4. s i – диаграмма водяного пара (схема)
На нее наносятся обычно те же линии, что и в sT – диаграмме, т.е. кривые жидкости и сухого насыщенного пара, линии постоянных давлений и линии постоянных степеней сухости. Кроме того, на s i – диаграмме наносятся линии постоянных температур, которые в sT – диаграмме имеют вид горизонтальных линий. АК – линия жидкости, КВ – линия сухого пара. На практике обычно не приходится иметь дела с очень влажными парами, область которых находится в нижней части s i – диаграммы. Поэтому для практических целей пользуются только правой верхней ее частью, что дает возможность выполнить ее в более крупном масштабе и сделать более подробной и удобной для пользования. Такая диаграмма построена профессором Вукаловичем.
Раздел VII. ИСТЕЧЕНИЕ ГАЗОВ И ПАРОВ.
§ Сопло, диффузор. § Критическая скорость. § Дросселирование.
Дата добавления: 2014-12-26; Просмотров: 4775; Нарушение авторских прав?; Мы поможем в написании вашей работы! |