КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Типы ионизирующего излучение и его взаимодействие с веществом
Ионизирующее излучение – это поток заряженных или нейтральных частиц, а также квантов электромагнитного излучения, которые проходя через вещество, способны вызывать возбуждение или ионизацию атомов или молекул среды. Все излучения делят на фотонные или корпускулярные. В фотонных – энергию переносят кванты электромагнитного излучения. К нему относят γ- излучение, рентгеновское излучение и некоторые другие. В корпускулярном излучении энергию переносят заряженные или нейтральные частицы. К этому типу излучений относят α -излучение, β -излучение, нейтронное излучение (Рис.2). Рисунок 2. Виды ионизирующих излучений (116) Заряженные частицы с достаточно высокой энергией способны вызывать непосредственную ионизацию атомов при столкновении, поэтому такие излучения относят к классу непосредственно ионизирующих излучений. Нейтральные частицы и кванты излучений сами не способны вызвать ионизацию и в процессе продвижения через среду могут высвобождать электроны, которые способны вызвать ионизацию атомов среды. Такие излучения относят к косвенно ионизирующим. Различные типы атомных излучений, при прохождении через вещество передают ему энергию различными путями. Относительно крупная α– частица имеет большую вероятность столкнуться с электронами атомов. Поэтому она неглубоко проникает в вещество, быстро теряет энергию, оставляет в поверхностном слое сгусток ионов и относится к плотноионизирующей радиации. Такой тип ионизирующего излучения задерживается поверхностными слоями кожи или одеждой, но может представлять угрозу при воздействии на поверхность легких или внутренних органов при инкорпорированном воздействии. γ- кванты обладают высокой энергией и очень малой длиной волны, поэтому они редко взаимодействуют с электронами атомов, т.е. одна ионизация будет образовываться на значительном расстоянии от другой, поэтому γ- излучение относится к редкоинизирующему. Такое излучение очень незначительно рассеивается в веществе и поэтому обладает большой проникающей способностью и легко пронизывает любой организм, независимо от его размеров (38). β -излучение занимает промежуточное положение. Чем выше энергия β– частиц, тем глубже они проникают в вещество и тем меньше плотность ионизации. В конце движения, когда значительная часть энергии уже потеряна, они дают большую плотность ионизации. К α -излучателям относят около 160 природных и искусственных радионуклидов, расположенных в конце периодической системы и имеющих атомный номер более 82. β -излучателей значительно больше, около 700. Как было сказано выше, и α -, и β - распад сопровождается γ- излучением. При взаимодействии с атомами твердого тела ионизирующее излучение вызывает смещение атомов из устойчивых положений в решетке, ионизацию и, в некоторых случаях, появление в решетке примесей за счет деления и ядерных реакций. Облучение вызывает более или менее устойчивые изменения свойств твердого тела — радиационное повреждение, характер которого зависит от типа связей в облучаемом теле, вида и условий облучения (37). При взаимодействии с веществом любой частицы ионизирующего излучения возможны упругое и неупругое рассеяние. Упругое рассеяние происходит по правилам ньютоновской (классической) механики, т.е. суммарная кинетическая энергии частиц до и после столкновения одинакова, но частицы изменяют направление движения. При неупругом рассеянии часть кинетической энергии налетающей частицы расходуется на ионизацию, возбуждение атомов среды и тормозное излучение. Передача энергии заряженной частицей веществу осуществляется в основном, посредством возбуждения и ионизации атомов. Однако, чтобы осуществить ионизацию, квант или частица должны непосредственно столкнуться, попасть в ядро или электрон атома. Если мы примем во внимание ничтожно малую длину волны или размер ионизирующей частицы, то такое попадание будет очень редким явлением. Наименьшей проникающей способностью обладает α -частица, однако при прохождении ее через вещество образуется цепочка ионов с максимумом в конце пути. Кроме того, тяжелая α -частица, способна вызывать смещение атомов из узлов кристаллической решетки. Эти смещенные атомы обладают значительной энергией, чтобы также вызывать ионизацию. Таким образом, α -частица будет неглубоко проникать в вещество, но при этом вызывать в поверхностном слое массированное радиационное повреждение (19). При прохождении через вещество γ- излучения возможны три типа взаимодействия с атомами: фотоэлектрический эффект (фотоэффект), эффект Комптона и образование электрон-позитронных пар.
Фотоэффект процесс взаимодействия фотона с электроном, связанным с атомом, при котором электрону передается вся энергия фотона. При этом электрон выбрасывается за пределы атома (рис.3). Фотоэффект на свободном электроне невозможен. Рисунок 3 Фотоэффект (117) Эффект Комптона представляет собой рассеяние фотона. Фотон при этом не поглощается, а лишь теряет часть энергии и изменяет направление движения. Избыток его энергии передается комптоновскому электро-ну. При комптоновском рассеянии угол между направлением движения первичного и рассеянного фотонов может изменяться от нуля до180°. Рисунок 4. Эффект Комптнона (117) Образование электрон-позитронной пары — третий вид взаимодействия фотонов с веществом, который может происходить при достаточно высокой энергии фотонов в поле атомного ядра. Образованные электрон и позитрон производят ионизацию среды.
Рисунок 5. Образование электрон-позитронной пары (117)
Дата добавления: 2014-12-26; Просмотров: 4095; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |