Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Содержательный подход к измерению информации




Методические рекомендации по изучению темы

Изучаемые вопросы:

ª От чего зависит информативность сообщения, принимаемого человеком.

ª Единица измерения информации.

ª Количество информации в сообщении об одном из 7V равновероятных событий.

С позиции содержательного подхода просматривается следующая цепочка понятий: информация — сообщение — информативность сообщения — единица измерения информации — информационный объем сообщения.

Исходная посылка: информация — это знания людей. Следующий вопрос: что такое сообщение? Сообщение — это информационный поток, который в процессе передачи информации поступает к принимающему его субъекту. Сообщение — это и речь, которую мы слушаем (радиосообщение, объяснение учителя), и воспринимаемые нами зрительные образы (фильм по телевизору, сигнал светофора), и текст книги, которую мы читаем и т.д.

Вопрос об информативности сообщения следует обсуждать на примерах, предлагаемых учителем и учениками. Правило: информативным назовем сообщение, которое пополняет знания человека, т. е. несет для него информацию. Для разных людей одно и то же сообщение, с точки зрения его информативности, может быть разным. Если сведения «старые», т. е. человек это уже знает, или содержание сообщения непонятно человеку, то для него это сообщение неинформативно. Информативно то сообщение, которое содержит новые и понятные сведения.

Нельзя отождествлять понятия «информация» и «информативность сообщения». Следующий пример иллюстрирует различие понятий. Вопрос: «Содержит ли информацию вузовский учебник по высшей математике с точки зрения первоклассника?». Ответ: «Да, содержит с любой точки зрения! Потому что в учебнике заключены знания людей: авторов учебника, создателей математического аппарата (Ньютона, Лейбница и др.), современных математиков». Эта истина — абсолютна. Другой вопрос: «Будет ли информативным текст этого учебника для первоклассника, если он попытается его прочитать? Иначе говоря, может ли первоклассник с помощью этого учебника пополнить собственные знания?» Очевидно, что ответ отрицательный. Читая учебник, т.е. получая сообщения, первоклассник ничего не поймет, а стало быть, не обратит его в собственные знания.

При объяснении этой темы можно предложить ученикам поиграть в своеобразную викторину. Например, учитель предлагает детям перечень вопросов, на которые они молча записывают ответы на бумагу. Если ученик не знает ответа, он ставит знак вопроса. После этого учитель дает правильные ответу на свои вопросы, а ученики, записав ответы учителя, отмечают, какие из них оказались для них информативными (+), какие — нет (—). При этом для сообщений, отмеченных минусом, нужно указать причину отсутствия информации: не новое (это я знаю), непонятное. Например, список вопросов и ответы одного из учеников могут быть следующими.

 

Вопрос учителя Ответ ученика   Информативность сообщения Причина неинформативности
1. Какой город является столицей Франции Столица Франции — Париж Столица Франции — Париж Не новое
2.4-го изучает коллоидная химия   Коллоидная химия изучает дисперсионные состояния систем, обладающих высокой степенью раздробленности Непонятное
3. Какую высоту и вес имеет Эйфелева башня?   Эйфелева башня имеет высоту 300 метров и вес 9000 тонн. +  

 

Введение понятия «информативность сообщения» является первым подходом к изучению вопроса об измерении информации в рамках содержательной концепции. Если сообщение неинформативно для человека, то количество информации в нем, с точки зрения этого человека, равно нулю. Количество информации в информативном сообщении больше нуля.

Для определения количества информации нужно ввести единицу измерения информации. В рамках содержательного подхода такая единица должна быть мерой пополнения знаний субъекта; иначе можно еще сказать так: мерой уменьшения степени его незнания. В учебнике [26] дано следующее определение единицы информации: «Сообщение, уменьшающее неопределенность знаний в 2 раза, несет 1 бит информации». Немного дальше приводится определение для частного случая: «Сообщение о том, что произошло одно событие из двух равновероятных, несет 1 бит информации».

Определение бита — единицы измерения информации может оказаться сложным для понимания учениками. В этом определении содержится незнакомое детям понятие «неопределенность знаний». Прежде всего нужно раскрыть его. Учитель должен хорошо понимать, что речь идет об очень частном случае: о сообщении, которое содержит сведения о том, что произошло одно из конечного множества (N) возможных событий. Например, о результате бросания монеты, игрового кубика, вытаскивания экзаменационного билета и т. п. Неопределенность знания о результате некоторого события — это число возможных вариантов результата: для монеты — 2, для кубика — 6, для билетов — 30 (если на столе лежало 30 билетов).

Еще одной сложностью является понятие равновероятности. Здесь следует воспользоваться интуитивным представлением детей, подкрепив его примерами. События равновероятны, если ни одно из них не имеет преимущества перед другими. С этой точки зрения выпадения орла и решки — равновероятны; выпадения каждой из шести граней кубика — равновероятны. Полезно привести примеры и неравновероятных событий. Например, в сообщении о погоде в зависимости от сезона сведения о том, что будет дождь или снег могут иметь разную вероятность. Летом наиболее вероятно сообщение о дожде, зимой — о снеге, а в переходный период (в марте или ноябре) они могут оказаться равновероятными. Понятие «более вероятное событие» можно пояснить через родственные понятия: более ожидаемое, происходящее чаще в данных условиях. В рамках базового курса не ставится задача понимания учениками строгого определения вероятности, умения вычислять вероятность. Но представление о равновероятных и неравновероятных событиях должно быть ими получено. Ученики должны научиться приводить примеры равновероятных и неравновероятных событий.

При наличии учебного времени полезно обсудить с учениками понятия «достоверное событие» — событие, которое обязательно происходит, и «невозможное событие». От этих понятий можно оттолкнуться, чтобы ввести интуитивное представление о мере вероятности. Достаточно сообщить, что вероятность достоверного события равна 1, а невозможного — 0. Это крайние значения. Значит, во всех других «промежуточных» случаях значение вероятности лежит между нулем и единицей. В частности, вероятность каждого из двух равновероятных событий равна . При углубленном варианте изучения базового курса можно использовать материал, приведенный в подразделе 1.1 «Вероятность и информация» второй части учебника [26].

Возвращаясь к вопросу об измерении количества информации, заключенной в сообщении об одном из N равновероятных событий, предлагаем следующую логическую цепочку раскрытия темы.

Объяснение удобно начать с частного определения бита как меры информации в сообщении об одном из двух равновероятных событий. Обсуждая традиционный пример с монетой (орел — решка), следует отметить, что получение сообщения о результате бросания монеты уменьшило неопределенность знаний в два раза: перед подбрасыванием монеты было два равновероятных варианта, после получения сообщения о результате остался один единственный. Далее следует сказать, что и для всех других случаев сообщений о равновероятных событиях при уменьшении неопределенности знаний в два раза передается 1 бит информации.

Примеры, приведенные в учебнике, учитель может дополнить другими, а также предложить ученикам придумать свои примеры. Индуктивно, от частных примеров учитель вместе с классом приходит к обобщенной формуле: 2i = N. Здесь N — число вариантов равновероятных событий (неопределенность знаний), а i — количество информации в сообщении о том, что произошло одно из N событий.

Если N— известно, а i является неизвестной величиной, то данная формула превращается в показательное уравнение. Как известно, показательное уравнение решается с помощью функции логарифма: i= log2N. Здесь учителю предоставляются два возможных пути: либо с опережением уроков математики объяснить, что такое логарифм, либо «не связываться» с логарифмами. Во втором варианте следует рассмотреть с учениками решение уравнения для частных случаев, когда N есть целая степень двойки: 2, 4, 8, 16, 32 и т.д. Объяснение происходит по схеме:

Если N = 2 = 21, то уравнение принимает вид: 2i = 21, отсюда i = 1.

Если N = 4 = 22, то уравнение принимает вид: 21 = 22, отсюда i = 2.

Если N = 8 = 23, то уравнение принимает вид: 2i = 23, отсюда i = 3 и т. д.

В общем случае, если N = 2 k, где k — целое число, то уравнение принимает вид 2i = 2k и, следовательно, i = k. Ученикам полезно запомнить ряд целых степеней двойки хотя бы до 210 = 1024. С этими величинами им предстоит еще встретиться в других разделах.

Для тех значений N, которые не являются целыми степенями двойки, решение уравнения 2i = N можно получать из приведенной в учебнике [26] таблицы в §2. Совсем не обязательно говорить ученикам, что это таблица логарифмов по основанию 2. Например, желая определить, сколько же бит информации несет сообщение о результате бросания шестигранного кубика, нужно решать уравнение: 2i = 6. Поскольку 22 < 6 < 23, то следует пояснить ученикам, что 2 < i < 3. Заглянув в таблицу, узнаем (с точностью до пяти знаков после запятой), что i = 2,58496 бит.

Рассмотренные примеры исчерпывают возможности содержательного подхода в решении проблемы измерения информации. Очевидно, что предложенный метод применим только в очень частных случаях. Попробуйте с содержательной точки зрения подсчитать количество информации, полученной в результате прочтения нового для вас параграфа в учебнике! Сделать это невозможно, хотя фактом является то, что информация получена. В этом и проявляется тот «тупик» данного подхода, о котором говорилось выше.




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 1031; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.