Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Полевые транзисторы




Идею создания полевых транзисторов, иначе называемых униполярными или канальными, в 1952 г. предложил один из создателей биполярного транзистора У. Шокли. Главным достоинством этих транзисторов является высокое входное сопротивление (как у ламп и даже больше). Принцип устройства и схема включения полевого транзистора изображены на рис. 1.

 

Рис. 1 - Полевой транзистор с p-n-переходом и каналом n-типа

Пластинка из полупроводника (в нашем случае n-типа) имеет на противоположных концах электроды, с помощью которых она включена в выходную (управляемую) цепь усилительного каскада. Эта цепь питается от источника E2 и в нее включена нагрузка Rн. Вдоль транзистора проходит ток основных носителей (в нашем случае электронный ток). Входная (управляющая) цепь транзистора образована при помощи третьего электрода, являющейся областью с другим типом электропроводности (в нашем случае это p-область). Источник E1 создает на единственном p-n-переходе обратное напряжение. Прямое напряжение на переход не подается, поскольку тогда входное сопротивление транзистора будет очень малым. Во входную цепь включен источник усиливаемых колебаний ИК.

Рассмотрим физические процессы в полевом транзисторе. При изменении входного напряжения изменяется обратное напряжение на p-n-переходе, в результате чего изменяется толщина запирающего слоя (на рисунке эта область ограничена штриховыми линиями). Соответственно меняется площадь поперечного сечения области, через которую проходит поток основных носителей заряда (выходной ток). Эта область называется каналом. Электрод, из которого в канал втекают основные носители заряда, называют истоком (И). Из канала носители проходят к электроду, который называется стоком (С). Исток и сток аналогичны катоду и аноду лампы (или эмиттеру и коллектору биполярного транзистора) соответственно. Управляющий электрод, который предназначен для регулирования площади поперечного сечения канала, называется затвором. Затвор аналогичен сетке лампы (или базе биполярного транзистора), хотя принцип их работы сильно отличается.

Если увеличивать напряжение на затворе, то запирающий слой становится толще и площадь поперечного сечения канала уменьшается. Его сопротивление постоянному току растет и ток стока уменьшается. При определенном напряжении на затворе площадь поперечного сечения канала станет равной нулю и ток стока уменьшится до весьма малого значения. Транзистор закроется. При напряжении на затворе, равным 0 сечение канала возрастет до наибольшего значения, сопротивление тока нагрузки уменьшится до наименьшего значения, ток стока увеличится до максимального значения. Для более эффективного управления выходным током с помощью входного напряжения, материал основного полупроводника, в котором создан канал, должен быть высокоомным, т. е. с невысокой концентрацией примесей. Тогда запирающий слой получается наибольшей толщины. Кроме того, начальная толщина самого канала (при нулевом входном напряжении) должна быть достаточно малой.

Поскольку вдоль канала потенциал повышается по мере приближения к стоку, то ближе к стоку обратное напряжение перехода увеличивается и толщина запирающего слоя становится больше.

Полевые транзисторы с изолированным затвором

Помимо полевых транзисторов с управляющим переходом существуют так называемые транзисторы с изолированным затвором. По-другому такие транзисторы называют МДП-транзисторами (металл-диэлектрик-полупроводник) или МОП-транзисторами (металл-оксид-полупроводник). На рис. 2 показан принцип устройства такого транзистора.

 

Рис. 2 - Принцип устройства МДП-транзистора с собственным каналом n-типа

Основанием служит кремниевая пластинка с электропроводностью p-типа. В ней созданы две области с электропроводностью n+-типа с повышенной проводимостью. Эти области являются истоком и стоком и от них сделаны выводы. Между стоком и истоком имеется приповерхностный канал с электропроводностью n-типа. Заштрихованная область - диэлектрический слой из диоксида кремния (его толщина обычно составляет 0,1 - 0,2 мкм). Сверху диэлектрического слоя расположен затвор в виде тонкой металлической пленки. Кристалл такого транзистора обычно соединен с истоком и его потенциал принимается за нулевой. Иногда от кристалла бывает сделан отдельный вывод. Рассмотренный транзистор называют транзистором с собственным (встроенным) каналом. Посмотрим, как же он работает.

Если на затвор приложено нулевое напряжение, то между стоком и истоком, через канал потечет ток, представляющий собой поток электронов. Через кристалл ток не пойдет, так как один из p-n-переходов находится под обратным напряжением. При подаче на затвор напряжения отрицательной полярности относительно истока (следовательно, и кристалла) в канале образуется поперечное электрическое поле, которое выталкивает электроны из канала в области истока, стока и кристалла. Канал обедняется электронами, его сопротивление увеличивается, ток уменьшается. Чем больше напряжение на затворе, тем меньше ток. Такой режим называется режимом обеднения. Если подать положительное напряжение на затвор, то под действием поля из областей стока, истока и кристалла в канал будут приходить электроны. Сопротивление канала падает, ток увеличивается. Такой режим называется режимом обогащения. Если кристалл n-типа, то канал должен быть p-типа и полярность напряжения меняется на противоположную.

Другим типом является так называемый транзистор с индуцированным (инверсным) каналом (рис. 3). От предыдущего он отличается тем, что канал возникает только при подаче на затвор напряжения определенной полярности.

 

Рис. 3 - Принцип устройства транзистора с индуцированным каналом n-типа

При отсутствии напряжения на затворе канала нет, между истоком и стоком n+-типа расположен только кристалл p-типа и на одном из p-n+-переходов получается обратное напряжение. В этом состоянии сопротивление между стоком и истоком велико и транзистор закрыт. При подаче на затвор напряжения положительной полярности под влиянием поля затвора электроны проводимости будут перемещаться из областей стока и истока и p-области по направлению к затвору. Когда напряжение на затворе достигает своего отпирающего (порогового) значения (единицы вольт), в приповерхностном слое концентрация электронов настолько увеличивается, что превышает концентрацию дырок, и в этом слое произойдет так называемая инверсия типа электропроводности, т. е. образуется тонкий канал n-типа и транзистор начнет проводить ток. Чем больше напряжение на затворе, тем больше ток стока. Очевидно, что такой транзистор может работать только в режиме обогащения. Если подложка n-типа, то получится индуцированный канал p-типа. Транзисторы с индуцированным каналом часто встречаются в устройствах переключения (очень часто в звукотехнике).

Схемы включения полевых транзисторов подобны схемам включения биполярных. Следует отметить, что полевой транзистор позволяет получить намного больший коэффициент усиления, нежели биполярный. Обладая высоким входным сопротивлением (и низким выходным) полевые транзисторы постепенно вытесняют биполярные. Следует также помнить, что полевые транзисторы очень "боятся" статического электричества, поэтому при работе с ними предъявляют особо жесткие требования по защите от статического электричества.




Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 726; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.