Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Часть III 1 страница




Ядерные транскрипты и их транспорт

Одна из важнейших функций клеточного ядра является реализация генетической информации в виде синтеза целого ряда РНК или служащих матрицами для синтеза белка, или образующих аппарат белкового синтеза. Синтез разного типа РНК на матрицах ДНК хроматина, транскрипция, включает в себя образование нескольких типов РНК, синтезируемых с помощью различных РНК-полимераз, ферментов синтезирующих РНК по одной из цепей матричной ДНК. Всего в эукариотических клетках встречается 5 типов РНК (см. табл. 8).

Таблица 8. Типы РНК, их количество, стабильность и ферменты, участвующие в их синтезе.

№№ пп Тип РНК Количество в % % синтезированных молекул за ед времени Фермент
  иРНК рРНК тРНК мяРНК митРНК 50-70   РНК-полимераза II РНК-полимераза I РНК-полимераза II РНК-полимераза II

 

Информационные РНК, самые разнообразные по величине и по строению нуклеотидных последовательностей являются самыми нестабильными по времени их жизни: они синтезируются в большом количестве и быстро деградируют, что обеспечивает смену функциональных активностей клетки. В связи с их быстрой заменой общее число их относительно невелико, 10% от массы всех РНК в клетке. Эти иРНК синтезируются при участии фермента РНК-полимеразы II, которая может образовывать первичную копию РНК с любого гена, кодирующего структуру белка. Дальнейшее созревание этих первичных транскриптов, их значительное укорочение и перестройка (сплайсинг – см. ниже) происходит с помощью особых рибонуклеопротеидных частиц, содержащих малые ядерные РНК (мяРНК). Эти мяРНК сннтезируются также с помощью этого фермента, их количество в клетке невелико (5%), но они более стабильны и долгоживущие. К мяРНК относится целая гетерогенная группа РНК, входящая в состав малых РНП-частиц, таких как SRP, теломераза, сплайсосомы и др. (см. ниже). Все остальные клеточные РНК необходимы для создания аппарата белкового синтеза. Рибосомные РНК синтезируются с помощью РНК-полимеразы I, они представляют основную массу клеточных РНК и относительно стабильны. Одна из рибосомных РНК, 5S РНК, а также 20 трансферных РНК, тоже стабильных, синтезируются с помощью РНК-полимеразы III. Митохондриальные РНК синтезируются в самих митохондриях независимо от синтеза РНК в ядре.

Реализация генетической информации, выражающаяся в синтезе разнообразных молекул РНК должна быть связана с изменением морфологии ядерных компонентов. На светооптическом уровне активация ядерной транскрипции всегда связана с деконденсацией хроматина, с увеличением объема ядрышек, с повышением их базофилии, т.е. с увеличением в них количества РНК. Эти общие признаки увеличения ядерной активности мало что дают для понимания хода молекулярных процессов на уровне реальных ядерных компонентов. Что происходит с участками хроматина, заключающими индивидуальный ген, кодирующий определенный белок, изучать очень трудно, т.к. эти гены в подавляющем большинстве случаев существуют в единичных копиях и проследить в гигантском клубке деконденсированных интерфазных хромосом за работой индивидуального гена чрезвычайно трудно (хотя и возможно).

Относительно более просто эту же задачу можно решить на генах многократно повторенных в геноме, таких как гены рибосомных РНК, входящих в состав интерфазных ядрышек, основной функцией которых является образование рибосом. Изучая ультраструктуру ядрышек и особенности морфологии синтеза рибосомных РНК впервые удалось с помощью электронного микроскопа визуализировать работающий ген.

 

Глава 8. Ядрышко – источник рибосом

Внутри интерфазных ядер как при витальных наблюдениях, так и на фиксированных и окрашенных препаратах видны мелкие, обычно шаровидные тельца – ядрышки. Впервые ядрышки были описаны Фонтана в 1774 г. В живых клетках они выделяются на фоне диффузной организации хроматина из-за своей светопреломляемости. Последнее свойство связано с тем, что ядрышки являются наиболее плотными структурами в клетке. Ядрышки обнаруживаются практически во всех ядрах эукариотических клеток за редким исключением. Это говорит об обязательном присутствии этого компонента в клеточном ядре.

В клеточном цикле ядрышко присутствует в течение всей интерфазы: в профазе по мере компактизации хромосом во время митоза оно постепенно исчезает, и отсутствует в мета- и анафазе, и вновь появляется в середине телофазы, чтобы сохраняться вплоть до следующего митоза, или до гибели клетки.

Долгое время функциональное значение ядрышка было непонятно. Вплоть до 50- годов исследователи считали, что вещество ядрышка представляет собой своего рода запас, который используется и исчезает в момент деления ядра.

Однако еще в 30-х годах рядом исследователей (МакКлинток, Хейтц, Навашин) было показано, что возникновение ядрышек связано топографически с определенными зонами на особых, ядрышкообразующих хромосомах. Эти зоны были названы ядрышковыми организаторами, а сами ядрышки представлялись как структурное выражение хромосомной активности. Позднее в 40-х годах, когда было найдено, что ядрышки содержат РНК, стала понятна их «базофилия», сродство к основным (щелочным) красителям, из-за кислой природы РНК. По данным цитохимических и биохимических исследований основным компонентом ядрышка является белок: на его долю приходится до 70-80% от сухого веса. Такое большое содержание белка и определяет высокую плотность ядрышек. Кроме белка в составе ядрышка обнаружены были нуклеиновые кислоты: РНК (5-14%) и ДНК (2-12%).

Уже в 50-х годах при изучении ультраструктуры ядрышек в их составе были обнаружены гранулы, сходные по своим свойствам с цитоплазматическими гранулами рибонуклеопротеидной природы, с рибосомами. Следующим этапом в изучении ядрышка было открытие принципиального факта – «ядрышковый организатор» является вместилищем генов рибосомных РНК.

Строение рибосом

Рибосома представляет собой элементарную клеточную машину синтеза любых белков клетки. Все они построены в клетке одинаково, имеют одинаковую молекулярную композицию, выполняют одинаковую функцию – синтез белка – поэтому их можно так же считать клеточными органоидами. В отличие от других органоидов цитоплазмы (пластид, митохондрий, клеточного центра, мембранной вакуолярной системы и др.) они представлены в клетке огромным числом: за клеточный цикл их образуется 1 х 107 штук. Поэтому основная масса клеточной РНК представляет собой именно рибосомную РНК. РНК рибосом относительно стабильна, рибосомы могут существовать в клетках культуры ткани в течение нескольких клеточных циклов. В печеночных клетках время полужизни рибосом составляет 50-120 часов.

Рибосомы – это сложные рибонуклеопротеидные частицы, в состав которых входит множество молекул индивидуальных (неповторенных) белков и несколько молекул РНК, Рибосомы прокариот и эукариот по своим размерам и молекулярным характеристикам отличаются, хотя и обладают общими принципами организации и функционирования. К настоящему времени методом рентгеноструктурного анализа высокого разрешения полностью расшифрована структура рибосом.

Полная, работающая рибосома, состоит из двух неравных субъединиц, которые легко обратимо диссоциируют на большую субъединицу и малую. Размер полной прокариотической рибосомы составляет 20 х 17 х 17 нм, эукариотической – 25 х 20 х 20. Полная прокариотическая рибосома имеет коэффициент седиментации 70S и диссоциирует на две субъединицы: 50S и 30S. Полная эукариотическая рибосома, 80S рибосома, диссоциирует на 60S и 40S субъединицы. Форма и детальные очертания рибосом из разнообразных организмов и клеток, включая как прокариотические, так и эукариотические, поразительно похожи, хотя и отличаются рядом деталей. Малая рибосомная субъединица имеет палочковидную форму с несколькими небольшими выступами (см. рис. 81), ее длина составляет около 23 нм, а ширина – 12 нм. Большая субъединица похожа на полусферу с тремя торчащими выступами. При ассоциации в полную 70S рибосому малая субчастица ложится одним концом на один из выступов 50S частицы, а другим в ее желобок. В состав малых субъединиц входит по одной молекуле РНК, а в состав большой – несколько: у прокариот – две, а у эукариот – 3 молекулы. Характеристики молекулярной композиции рибосом даны в таблице 9.

Таблица 9. Молекулярная характеристика рибосом

  Объект Коэффициент седиментации полной рибосомы и ее субъединиц Кол-во молекул РНК на субъеди-ницу Молеку-лярный вес РНК Коэффи-циент седиментации РНК Кол-во белковых молекул на субъединицу
30S 1 0,56 х 106 16S 21 Рибосомы 70S Прокариот 50S 2 1,2 х 106 23S 34 4,0 х 104 5S   40S 1 0,6 х 106 18S Рибосомы 80S Эукариот 60S 3 1,6 х 106 28S Всего 4,0 х 104 5S около 4,5 х 104 5,8S 80  

 

Таким образом в состав эукариотической рибосомы входят четыре молекулы РНК разной длины: 28S РНК содержит 5000 нуклеотидов, 18SРНК – 2000, 5,8S РНК – 160, 5SРНК – 120.Рибосомные РНК обладают сложной вторичной и третичной структурой, образуя сложные петли и шпильки на комплементарных участках, что приводит к самоупаковке, самоорганизации этих молекул в сложное по форме тело. Так, например, сама по себе молекула 18S РНК в физиологических ионных условиях образует палочковидную частицу, определяющую форму малой субъединицы рибосом.

Под действием низких ионных сил, особенно при удалении ионов магния, плотные рибосомные субъединицы могут разворачиваться в рыхлые рибонуклеопротеидные тяжи, где можно наблюдать кластеры отдельных белков, но правильных структур, типа нуклеосом, нет, т.к. нет групп из сходных белков: в рибосоме все 80 белков разные.

Для того, чтобы образовались рибосомы необходимо наличие четырех типов рибосомных РНК в эквимолярных отношениях и наличие всех рибосомных белков. Сборка рибосом может происходить спонтанно in vitro, если последовательно добавлять к РНК белки в определенной последовательности.

Следовательно для биосинтеза рибосом необходим синтез множества специальных рибосомных белков и 4-х типов рибосомной РНК. Где эта РНК синтезируется, на каком количестве генов, где эти гены локализованы, как они организованы в составе ДНК хромосом – все эти вопросы в последние десятилетия были успешно разрешены при изучении строения и функции ядрышек.

Чем определяется число ядрышек в клетке

Как уже говорилось, все клетки имеют обязательные внутриядерные структуры – ядрышки. Это правило имеет небольшое число исключений, которые, как будет видно, только подчеркивают важность и необходимость участия ядрышка в жизненных отправлениях клетки. К таким исключениям относятся клетки дробящихся яиц, где ядрышки отсутствуют на ранних этапах эмбриогенеза, или клетки, закончившие развитие и необратимо специализировавшиеся как, например, некоторые клетки крови.

В остальных случаях в клетках наблюдается 1-5 ядрышек, причем их количество не строго постоянно даже у одного и того же типа клеток. Более того в некоторых половых клетках (растущие ооциты) число ядрышек может достигать нескольких сот, т.е. на два порядка выше, чем в соседних соматических клетках. Это - т.н. амплификация ядрышек.

Еще в 30-х годах было сделано предположение, что число ядрышек зависит от числа "ядрышковых организаторов" - особых участков, на которых в телофазе происходит новообразование ядрышек интерфазного ядра. Часто ядрышковые организаторы локализованы во вторичных перетяжках хромосом (образуют вторичные перетяжки хромосом). Так у человека ядрышковые организаторы расположены в коротких плечах 13, 14, 15, 21 и 22 хромосом (10 на диплоидный набор) (рис. 82). У млекопитающих обычно имеется несколько ядрышкообразующих хромосом на диплоидный набор: у кошки - 2; у свиньи - 2; у мыши - 4; у коровы - 8. У хладнокровных позвоночных и у птиц обычно имеется только по одной паре ядрышкообразующих хромосом.

Таким образом максимальное число ядрышек в разных клетках определяется числом ядрышковых организаторов и увеличивается согласно плоидности ядра: в крупных полиплоидных ядрах всегда количество ядрышек больше.

Это правило подтверждается прямыми наблюдениями над мутантными особями с разным числом ядрышковых организаторов. Так у шпорцевой лягушки в норме в диплоидной клетке есть две ядрышкообразующих хромосомы и соответственно 1-2 ядрышка. У гетерозиготной особи с одной ядрышкообразующей хромосомой - 1, у гомозиготных мутантных личинок, у которых нет ядрышковых организаторов, ядрышки не возникают и не происходит синтеза рРНК. Сходные наблюдения были получены на дрозофилах с разным числом ядрышкообразующих хромосом от 0 до 4.

Локализация ядрышковых организаторов определяется довольно точно на митотических хромосомах с помощью окраски солями серебра, которые имеют специфическое сродство к некоторым ядрышковым белкам. Более точным является определение ядрышковых организаторов с помощью метода молекулярной гибридизации in situ. Так меченная тритием рРНК при контакте с денатурированной ДНК на препарате митотических хромосом образует ДНК-рРНК гибрид только в тех местах, где есть последовательности ДНК, комплементарные рРНК.

Чаще всего в клетках количество ядрышек меньше, чем число ядрышковых организаторов. Это связано с тем, что при новообразовании ядрышек они могут сливаться друг с другом в одну общую структуру, т.е. могут объединяться в пространстве интерфазного ядра отдельные ядрышковые организаторы разных хромосом. Так в тканях человека могут встречаться клетки с одним ядрышком. Это значит, что десять ядрышкообразующих участков, локусов, диплоидного набора хромосом входят в состав одного ядрышка. Слияние ядрышек друг с другом хорошо показано на живых клетках культуры ткани при цейтраферной киносъемке.

Множественность рибосомных генов

При изучении числа ядрышек при различных хромосомных абберациях было найдено, что при разрыве хромосомы на месте вторичной перетяжки ядрышки могут возникать на каждом из фрагментов хромосом. Так при обмене участками между двумя хромосомами в микроспороцитах кукурузы, в том случае когда разрыв одной из хромосом происходил через ядрышковый организатор, возникали две хромосомы, каждая из которых несла часть исходного ядрышкового организатора. В этом случае обе хромосомы обладали способностью образовывать ядрышки, хотя и в неодинаковой степени. Из этих наблюдений был сделан очень важный вывод (который полностью подтвердился в 60-х годах на молекулярно-биологическом уровне) о том, что ядрышковый организатор представляет собой не точечный локус хромосомы, а является множественным по своей структуре, содержит несколько одинаковых генных участков, каждый из которых отвечает за образование ядрышка.

Методом молекулярной гибридизации было показано, что в составе геномов эукариот рибосомные гены представлены сотнями и тысячами единиц; они принадлежат к фракции умеренно повторяющихся последовательностей ДНК. Даже у бактерий в геноме может быть несколько (6-7) рассеянных по геному идентичных последовательностей, ответственных за синтез рРНК. Общее количество этой фракции ДНК (рДНК) у E. coli составляет около 1% от всей ДНК. У эукариотических организмов этот процент может составлять 0,18 для X. laevis, 0,4 - для человека, 1,3 для дрозофилы, 5,5 для пекарских дрожжей. Число же рибосомных генов у эукариот намного больше, чем у прокариотических клеток. В табл. 10 приведены некоторые примеры числа генов рРНК у различных представителей эукариот.

Таблица 10. Количество рибосомных генов на гаплоидный набор хромосом

Хордовые Млекопитающие:     Птицы: Амфибии:     Рыбы:     Беспозвоночные Иглокожие: Насекомые:   Моллюски: Нематоды: Простейшие   Высшие растения:   Грибы:   Водоросли:   Слизневики:     Человек - 200 Мышь - 100 Кошка - 1000 Курица - 200 Тритон гребенчатый - 4100 Амфиума - 19600 Линь - 120 Лосось - 730 Неоцератод - 4800   Морской еж - 260 Сверчок домашний - 170 Шелкопряд тутовый - 240 Устрица - 220 Аскарида - 300 Эвглена - 800 Тетрахимена - 290 Фасоль - 2000 Кукуруза - 8500 Дрожжи пекарские - 140 Хламидомонада - 150 Ацетабулария - 1900 Диктиостелиум - 200 Физарум - 80

 

С помощью метода молекулярной гибридизации было проанализировано не только число рибосомных генов, но и их локализация. Из этих экспериментов следовало, что именно зоны ядрышковых организаторов во вторичных перетяжках хромосом Xenopus содержат рибосомные гены и что в каждом из этих организаторов содержится примерно по 300 генов, т.е. ядрышковые организаторы представляют собой полицистронные участки, содержащие множество одинаковых генов (полиизогенные участки). Следовательно, рибосомные гены собраны вместе в группы или кластеры.

Наблюдать непосредственно порядок расположения рибосомных генов на ДНК выделенных ядрышек с помощью электронного микроскопа удалось на дополнительных ядрышках ооцитов амфибий.

Амплифицированные ядрышки

Обычно число генов рибосомных РНК постоянно на геном, оно не меняется в зависимости от уровня транскрипции этих генов. Так у клеток с высоким уровнем метаболизма число генов рРНК точно такое же как и число у клеток, полностью прекративших синтез рибосом. При репликации ДНК в S-периоде происходит и удвоение числа генов рРНК, поэтому их количество коррелирует с плоидностью клетки.

Однако существуют случаи, когда гены рРНК подвергаются избыточной репликации. При этом дополнительная репликация генов рРНК происходит в целях обеспечения продукции большого количества рибосом. В результате такого сверхсинтеза генов рРНК их копии могут становиться свободными, экстрахромосомными. Эти внехромосомные копии генов рРНК могут функционировать независимо, в результате чего возникает масса свободных дополнительных ядрышек, но уже не связанных структурно с ядрышкообразующими хромосомами. Это явление получило название амплификации генов рРНК. Особенно подробно это явление изучено на растущих ооцитах амфибий, хотя оно встречается как у животных, так и у растений.

Так у X. laevis, наиболее подробно изученный и популярный объект, амплификация рДНК, происходит в профазе I деления созревания, когда синтез хромосомной ДНК давно закончен. В этом случае количество амплифицированной рДНК (или генов рРНК) становится в 3000 раз больше того, что приходится на гаплоидное количество рДНК, и соответствует 1,5 х 106 генов рРНК. Эти сверхчисленные внехромосомные копии и образуют сотни дополнительных ядрышек в растущих ооцитах. В среднем же на одно дополнительное ядрышко приходится несколько сот или тысяч генов рРНК.

Амплифицированные ядрышки встречаются также в ооцитах насекомых. Так у окаймленного плавунца в ооцитах обнаружено 3 х 106 экстрахромосомных копий генов рРНК.

Биологический смысл появления сверхчисленных экстрахромосомных ядрышек при росте ооцитов совершенно понятен: для синтеза огромного количества запасных продуктов, которые будут использованы на ранних стадиях эмбриогенеза, необходимо соответственно огромное количество рибосом, которые могут быть в клетке синтезированы на дополнительных матрицах этих многочисленных амплифицированных ядрышек. После периода созревания ооцита при его двух последовательных делениях эти дополнительные ядрышки в состав митотических хромосом не входят, они отделяются от новых ядер и деградируют. Следовательно, амплификация рДНК в ооците представляет собой временное явление, не сказывающееся на постоянстве генома.

У низших эукариотических организмов наблюдаются также экстрахромосомные ядрышки. Так у Tetrachymena pyriformis в составе гаплоидного генома микронуклеуса имеется только единственный ген рРНК. В макронуклеусе же этого организма содержится около 200 гаплоидных эквивалентов в виде экстрахромосомных копий. У дрожжевых клеток также обнаружены экстрахромосомные копии генов рРНК в виде циклических молекул ДНК длиной около 3 мкм, содержащих один ген рРНК.

Строение и функционирование генов рРНК

Итак, в ядрышковых организаторах определенных хромосом локализованы места множественных сгруппированных вместе генов рибосомной РНК. Но как уже говорилось, существует 4 типа молекул рибосоной РНК, каждый из которых в полной эукариотической рибосоме представлен один раз. Значит ли это, что для каждой из этих РНК (28S рРНК, 18S рРНК, 5,8S рРНК, 5S рРНК) должен существовать отдельный ген, было долгое время неясным. Не понятным было также, как осуществляется в клетках одновременное сбалансированное образование этих разных рРНК. Этот вопрос был решен при исследовании динамики синтеза рибосомных РНК. Было обнаружено, что при использовании импульсной короткой метки среди клеточных РНК обнаруживается быстро синтезирующая РНК с высокой скоростью седиментации, тяжелая 45S РНК. Если после появления этой 45S РНК продолжать наблюдать за распределением метки во фракциях РНК, но уже в отсутствие меченных предшественников, то можно видеть, что по мере убывания метки в зоне 45S РНК, она начинает появляться и стабильно накапливаться в зонах 28S, 18S и 5,8S рибосомных РНК. Эти данные говорили о том, что при синтезе рибосомных РНК сначала образуется гигантская молекула-предшественник (45S РНК), которая затем дает начало основным молекулам рибосомной РНК. Было найдено, что молекула 45S РНК содержит около 13 х 103 оснований, имеет массу около 4,6 х 106, и может быть длиной 2-5 мкм. Явление распада молекулы 45S рРНК на фрагменты, соответствующие размерам 28S, 18S и 5,8S РНК, получил название "процессинг" или созревание. Во время процессинга происходит разрыв предшественника на три фрагмента и кроме того наблюдается значительная деградация РНК (около 50%, т.е. 6000 нуклеотидов). Кроме этих данных было вычислено, что молекула 5S РНК синтезируется независимо от 45S РНК и локализация гена 5S рРНК не связана с ядрышковым организатором.

Почти одновременно с получением этих биохимических данных О. Миллеру (1969) удалось с помощью электронного микроскопа увидеть работающие рибосомные гены. Для этого были под световым микроскопом вручную выделены ядра из средних ооцитов тритона, микроиглами была разорвана ядерная оболочка и в микропипетку были втянуты многочисленные амплифицированные ядрышки. Такая капля, содержащая ядрышки и кариоплазму, была перенесена в раствор низкой ионной силы со щелочным значением среды. Этот раствор наслаивался на раствор сахарозы с формалином, находящийся в микроячейке центрифужной пробирки, на дне микроячейки помещалась сеточка с формваром для электронной микроскопии. Действие низкой ионной силы в щелочной среде приводило к набуханию и диспергированию выделенных ядрышек, они разрыхлялись настолько, что становились плохо различимыми в световом микроскопе. При центрифугировании такие набухшие ядрышки проходили через слой сахарозы, еще больше расправлялись и фиксировались в формалине. Наконец они достигали дна микроячейки и распластывались на формваровой подложке. После этого сеточки вынимались, обезвоживались, оттенялись металлом и просматривались в электронном микроскопе (рис. 83, 97а).

На таком препарате были видны сложно изогнутые и перепутанные длинные осевые молекулы ДНК, на которых через равные промежутки располагались фибриллярные зоны, имеющие вид "елочек". Длина фрагмента ДНК, занятого такой "елочкой" была постоянной и равнялась 5 мкм. На этом отрезке располагалось около 100 плотных гранул величиной около 20 нм, от каждой из которых отходила в сторону тонкая изогнутая нить. Величина такой нити была минимальной на одном конце такого отрезка и максимальной на другом. Эти извитые латеральные нити и образовывали структуру типа "елочки". Было доказано, что крупные гранулы на нити ДНК представляют собой молекулы РНК-полимеразы I, ответственной за синтез рРНК, а боковые изогнутые нити - транскрипты, состоящие из синтезируемых молекул РНК. Самые длинные транскрипты находились на одном конце "елочки", соответствовали 45S предшественнику рРНК. Следовательно, синтез рРНК начинался на конце отрезка с короткими боковыми нитями, и заканчивался на участке с длинными нитями РНК. Такой участок ДНК, на котором были видны молекулы рРНК в процессе их удлинения, получил название транскрипционной единицы. Между транскрипционными единицами располагались участки ДНК, лишенные гранул РНК-полимеразы I и транскриптов. Это - зоны т.н. спейсеров, которые не транскрибируются, и, более того, на таких препаратах они имеют нуклеосомное строение, тогда как транскрипционные единицы свободны от нуклеосом. Величина таких спейсерных участков может варьировать не только в данной клетке, но быть различной у разных видов. Длина боковых фибрилл была в 5-10 раз короче, чем 45S РНК, из-за того, что эта новосинтезированная РНК связана с белками, образуя рибонуклеопротеидный тяж, предшественник рибосом.

Исходя из этих работ стало ясно, что рибосомный ген состоит из двух участков: нетранскрибируемая последовательность ДНК (nts) - спейсер и транскрипционная единица. В состав транскрипционной единицы входят участки, соответствующие 28S, 18S и 5,8S рРНК, разделенные вставками, которые деградируют при процессинге 45S РНК.

Расшифровка структуры рибосомных генов различных эукариотических объектов показала удивительно универсальный тип их строения:

3' nts - промотор- tse - 18S рРНК - tsi1 - 5,8S рРНК - tsi2 - 28S рРНК 5'

где nts - нетранскрибируемые последовательности ДНК спейсерного участка, ts - транскрибируемые последовательности ДНК (внешняя и две внутренние), и участки, соответствующие зрелым рибосомным РНК. В состав транскрипционной единицы входит весь ген за исключением спейсерного участка. Такая структура рибосомного гена практически одинакова для всех эукариотических организмов (рис. 84). Вариабельными являются как нетранскрибируемые (спейсерные) участки, так и транскрибируемые вставки (ts), которые не входят в состав зрелых рРНК.

Итак три основные молекулы рРНК синтезируются на одной транскрипционной единице. Что же касается молекулы 5S рРНК, то она к этому гену никакого отношения не имеет: 5S рРНК синтезируется на отдельных генах, локализованных не в зонах ядрышковых организаторов, даже на совсем иных хромосомах при участии РНК-полимеразы III. Так у человека основная масса генов 5S рРНК находится на I хромосоме, более мелкие кластеры - на 9 и 16 хромосомах. У ксенопуса гены 5S рРНК расположены в теломерных участках большинства хромосом. Гены 5S рРНК, тоже множественные, также собраны в кластеры, но их число выше, чем у остальных генов рРНК. Так у человека их насчитывается до 2000, у ксенопуса - 24000, у гребенчатого тритона - 32000. Есть объекты и с меньшим их числом: Drosophila - 320; крыса - 830. У нейроспоры и дрожжей число генов 5S рРНК одинаковое с числом других рибосомных генов, т.к. участок 5S рРНК включен и транскрибируется в спейсерной зоне.

Транскрипция рРНК идет с помощью двух ферментов: РНК-полимеразы I, которая участвует в синтезе 45S предшественника рРНК и РНК-полимеразы III, ответственной за синтез 5S рРНК. Матрицей для синтеза рРНК по определению должна быть ядрышковая ДНК.

В изолированном р-хроматине обнаружены гистоны, негистоновые белки и белки рибосом. Так в р-хроматине обнаружены основные сердцевинные (коровые) гистоны, но их количество составляет только 40% по сравнению с таковым в тотальном хроматине.

Первичные транскрипты (морфологически представлены в виде латеральных филаментов на “елочках”, образующихся на активных транскрипционных единицах) прогрессивно увеличиваются в длину по мере прохождения РНК-полимеразы I вдоль всего транскрипционного участка гена, начиная с точки начала репликации до терминального участка. Скорость роста цепи пре-рРНК составляет около 20-30 нуклеотидов/сек., т.е. весь синтез 45S рРНК занимает около 5-10 минут.

На каждой транскрипционной единице располагается множество (50-100) молекул РНК-полимеразы I, тем самым на каждом гене одновременно происходит синтез множества молекул пре-рРНК, которые находятся на разных стадиях роста полинуклеотидной цепи (рис. 85). Максимальной величины пре-рРНК достигает вблизи терминального участка, где ее молекулярный вес достигает 4,5 х 106 Д (для млекопитающих), а длина должна соответствовать 5,2 мкм. На самом же деле длина латерального транскрипта в 5-10 раз короче этой величины. Это связано с тем, что по мере роста транскрипта он связывается сразу же с белками, образуя в конечном участке транскрипции рибонуклеопротеид с коэффициентом седиментации 80S. Такие 80S рРНП составляют до 20% от всех РНП ядрышка. Большая часть белков, которые связываются с 45S РНК являются белками, входящими в состав малой и большой субъединиц зрелых рибосом. Таким образом уже на уровне незрелой гигантской молекулы пре-рРНК происходит специфическое связывание с рибосомными белками: около 50% белков большой субъединицы и около 30% малой субъединицы связываются с пре-рРНК во время ее синтеза или вскоре после него. Такая связь 45S РНК с белками и приводит к тому, что латеральные транскрипты имеют толщину около 10 нм (после оттеснения металлами), на их свободном конце часто наблюдается крупная гранула (30 нм), что может указывать на высокую степень компактизации РНК и белка на 5’-конце цепи РНК.

Распад 45S РНК на более короткие отрезки, явление созревания рРНК или процессинг, происходит после завершения транскрипции. Ферментативный механизм этого явления еще до конца не ясен, в нем принимает участие эндо- и экзонуклеазы. При этом происходит последовательное расщепление пре-рРНК на фрагменты и частичная деградация участков РНК на этих фрагментах. В результате процессинга пре-рРНК примерно 50% нуклеотидов первично синтезированной молекулы отщепляется (мол. вес 45S РНК составляет 4,6 х 106, а суммарный мол. вес зрелых рРНК около 2,2 х 106) (рис. 86).




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 663; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.