КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Drawbacks of Bisection Method
Advantages of Bisection Method a) The bisection method is always convergent. Since the method brackets the root, the method is guaranteed to converge. b) As iterations are conducted, the interval gets halved. So one can guarantee the error in the solution of the equation.
a) The convergence of bisection method is slow as it is simply based on halving the interval. b) If one of the initial guesses is closer to the root, it will take larger number of iterations to reach the root. c) If a function is such that it just touches the x -axis (Figure 6) such as it will be unable to find the lower guess, , and upper guess, , such that d) For functions where there is a singularity[1] and it reverses sign at the singularity, bisection method may converge on the singularity (Figure 7). An example include and , are valid initial guesses which satisfy . However, the function is not continuous and the theorem that a root exists is also not applicable. Figure 6: Function has a single root at that cannot be bracketed. Figure 7: Function has no root but changes sign.
[1] A singularity in a function is defined as a point where the function becomes infinite. For example, for a function such as 1/x, the point of singularity is x=0 as it becomes infinite.
Дата добавления: 2014-12-27; Просмотров: 2139; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |