КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Векторные диаграммы для представления гармонических колебаний
Векторные диаграммы для представления гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Энергия колебательного движения. Скорость и ускорение при гармонических колебаниях. Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями. Согласно определению скорости, скорость – это производная от координаты по времени.
Согласно определению ускорения, ускорение – это производная от скорости по времени:
Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Гармонические колебания - колебания, при которых колеблющаяся величина изменятся со временем по закону синуса (косинуса). Гармонические колебания описываются уравнением типа: x = A cos (0 t +), где x – смещение колеблющейся точки от положения равновесия. А - максимальное значение колеблющейся величины, называемое амплитудой колебания, 0 - круговая (циклическая) частота, - начальная фаза колебания в момент времени t=0, (0 t +) - фаза колебания в момент времени t.
Гармонические колебания изображаются графически методом вращающегося вектора амплитуды, или методом векторных диаграмм. Для этого из произвольной точки О, выбранной на оси x под углом ,равнымначальной фазе колебания, откладывается вектор А, модуль которого равен амплитуде А рассматриваемого колебания. Если этот вектор привести во вращение с угловой скоростью 0, равной циклической частоте колебаний, то проекция конца вектора будет перемещаться по оси x и принимать значения от - А до + А, а колеблющаяся величина будет изменяться со временем по закону s = A cos (0 t +). Таким образом, гармоническое колебание можно представить проекцией на некоторую произвольно выбранную ось вектора амплитуды А, отложенного из произвольной точки оси под углом , равным начальной фазе, и вращающегося с угловой скоростью 0 вокруг этой точки.
Дата добавления: 2015-04-24; Просмотров: 2233; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |