Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

II – 24. Потенциальная энергия и вектор силы связаны между собой соотношением




II – 23. Потенциальная энергия и вектор силы связаны между собой соотношением

II – 21. Действие неконсервативных сил приводит к тому, что

1) часть кинетической энергии переходит в потенциальную;

2) работа неконсервативных сил приводит к увеличению внутренней энергии;

3) часть внутренней энергии переходит в потенциальную;

4) распределение энергии по видам (кинетическая, потенциальная, внутренняя) остается неизменным.

 

II – 22. Какие из ниже приведенных формул написаны для потенциальной энергии?

А. В. С.

1) Только А, 2) Только С, 3) А и В, 4) А и С.

 

1) , 2) , 3) , 4) .

 

1) , 2) , 3) , 4) .

 

Тема III (динамика твердого тела)

 

III – 1. Что такое момент импульса?

1) ; 2) мгновенное значение ; 3) ; 4) .

 

III – 2. Вектор момента импульса

1) параллелен вектору импульса ;

2) параллелен радиусу-вектору ;

3) перпендикулярен вектору ;

4) перпендикулярен произведению .

 

III – 3. Если – радиус-вектор, – импульс, – угол между и , то модуль момента импульса равен

1) , 2) ; 3) ; 4) .

 

III – 4. Момент импульса – это

1) мгновенное значение импульса;

2) мгновенное значение изменения импульса;

3) векторное произведение радиуса-вектора на импульс;

4) скалярное произведение радиуса-вектора на импульс.

 

III – 5. В центрально симметричном поле сохраняется

1) только механическая энергия;

2) механическая энергия и импульс;

3) механическая энергия и момент импульса;

4) момент импульса и импульс.

 

III – 6. В центрально симметричном поле сила подчиняется соотношению ( – единичный вектор, совпадающий по направлению с )

1) ; 2) ; 3) ; 4) .

 

III – 7. Момент импульса и суммарный момент внешних сил связаны между собой соотношением

1) ; 2) ; 3) ; 4) .

 

III – 8. Вектор момента силы равен

1) ; 2) ; 3) ; 4) мгновенному значению силы.

 

III – 9. При движении твердого тела, движение его центра масс подчиняется закону ( – равнодействующая внешних сил, – равнодействующая всех сил)

1) ; 2) ; 3) ; 4) .

III – 10. При вращении вокруг неподвижной оси z уравнение динамики принимает вид ( – момент инерции, – момент сил, – угловая скорость)

1) , 2) , 3) , 4) .

 

III – 11. Проекция на неподвижную ось z момента импульса твердого тела, вращающегося с угловой скоростью

1) , 2) , 3) , 4) .

 

III – 12. При вращении вокруг неподвижной оси z, под действием силы , имеющей момент , угловое ускорение может быть найдено по формуле ( – момент инерции)

1) , 2) , 3) , 4) .

 

III – 13. Момент инерции материальной точки, имеющей массу равняется ( – радиус-вектор, – расстояние до оси вращения)

1) ; 2) ; 3) ; 4) .

 

III – 14. Момент инерции твердого тела, имеющего объем и массу , вращающегося вокруг оси, находящегося на расстоянии от центра масс, находится по формуле ( R - расстояние от оси вращения до элементарного объема dm )

1) , 2) , 3) , 4) .

 

III – 15. По теореме Штейнера момент инерции тела массой m относительно произвольной оси, находящейся на расстоянии от центра масс этого тела равен

1) ; 2) ; 3) .

 

III – 16. Для нахождения момента инерции твердого тела, имеющего объем относительно его центра масс, применяется формула ( – расстояние от оси вращения, – толщина твердого тела)

1) ; 2) ; 3) ; 4) .

 

III – 17. Кинетическая энергия при вращении вокруг неподвижной оси Т равна

1) ; 2) ; 3) ; 4) .

 

III – 18. Работа силы , имеющей момент , при повороте на угол вокруг неподвижной оси с угловой скоростью равен ()

1) ; 2) ; 3) ; 4) .

 

III – 19. Кинетическая энергия при плоском движении твердого тела, поступательная скорость которого , а угловая скорость равен

1) ; 2) ; 3) ; 4) .

 

III – 20. При плоском движении выполняется соотношение

1) ; 2) ; 3) ; 4) .

III – 21. Момент инерции цилиндра относительно его оси ( – его масса, – его радиус)

1) ; 2) ; 3) ; 4) .

 

III – 22. Момент инерции стержня, вращающегося вокруг перпендикулярной ему оси, проходящий через один из его концов

1) ; 2) ; 3) ; 4) .

III – 23. Момент инерции диска относительно перпендикулярной ему оси, проходящий через его край ( -радиус диска – его масса)

1) ; 2) ; 3) ; 4) .

 

III – 24. Если сосуд, наполненный водой, вращается вокруг некоторой оси, то при замерзании воды его момент инерции относительно этой оси

1) не изменится;

2) увеличится;

3) уменьшится;

4) уменьшится или увеличится в зависимости от расстояния от оси вращения до центра масс.

 

III – 25. Если с одной и той же горки высотой h скатываются труба и сплошной цилиндр одинаковой массы и радиуса без начальной скорости, то у подножия горки

1) скорость их будет одинаковой;

2) скорость цилиндра будет больше;

3) скорость трубы будет больше;

4) их кинетические энергии будут отличаться на .

 

III – 26. Если на вращающейся платформе человек переходит с одного места на другое, то изменение угловой скорости от до подчиняется соотношению ( – момент инерции платформы, и – момент инерции человека в начальном и конечном положении)

1) ; 2) ;

3) ; 4) .

 

III – 27. Горизонтальный стержень может свободно вращаться вокруг вертикальной оси, проходящей через его центр. Масса стержня – М, длина – . В конец стержня попадает пуля, массой , летящая со скоростью и застревает в стержне. Стержень начинает вращаться так, что его конец двигается со скоростью . Если , то и связаны соотношением

1) ; 2) ; 3) ; 4) .

 

III – 28. Колесо в виде обода (масса распределена по образующей) скатывается с горки высотой h. Скорость колеса в начале и в конце связаны между собой соотношением

1) ; 2) ; 3) ; 4) .

 

III – 29. При действии на вращающийся гироскоп силы, перпендикулярной оси вращения,…

1) ось сохраняет свое положение при небольшом изменении скорости вращения;

2) ось наклоняется в направлении силы;

3) ось поворачивается перпендикулярно приложенной силе;

4) ось поворачивается в сторону, противоположенную по направлению приложенной силы.

 

III – 30. В поле силы тяжести угловая скорость прецессии волчка (гироскопа) массой связана с угловой скоростью его вращения и его моментом инерции I соотношением

1 ) , 2) , 3 ) , 4) .




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1160; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.