КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Шарикоподшипниковая сталь
Шарикоподшипниковую сталь применяют главным образом для изготовления шариков, роликов и колец подшипников [2]. Но номенклатура марок стали данного вида достаточно широка. Это объясняется разнообразием требований к эксплуатационным свойствам подшипников со стороны традиционных, а также новых отраслей промышленности и сельского хозяйства.
Наиболее распространённые подшипниковые высокоуглеродистые стали можно классифицировать следующим образом:
стали для подшипников, работающих в обычных условиях (хромистая, хромистая с добавкой молибдена, хромомарганцевокремнистая, хромомарганцевая с добавкой молибдена); стали для подшипников, работающих в агрессивных средах и при повышенной температуре (коррозионно-стойкая, теплостойкая).[1] К первым относятся стали марок ШХ15, ШХ15СГ, ШХ20СГ, ШХ4, ШХ6, ШХ9 и т.д.[3] В результате проведенной в 60 г. унификации две последние марки были заменены сталью ШХ15. Названия аналогичных марок в других странах - 52100, 100C6, SKF-24, SUJ2 и т.д.
Ко вторым относят стали марок 95Х18-Ш (где буква "Ш" указывает на то, что сталь выплавлена методом электрошлакового переплава, а вакуумно-дуговой переплав стали электрошлакового переплава обозначается "ШД"), 11Х18М-ШД, ЭИ760, ЭИ347 (8Х4В9Ф2), 8Х4М4ВФ1-Ш, 8DCV40, M50, Z80WDCV6, 80MoCrV4216 и др.
Кроме перечисленных широко применяют низкоуглеродистые цементируемые стали и ограниченно - сплавы с особыми физическими свойствами.
Выбор стали для конкретного подшипника диктуется его размерами и условиями эксплуатации.
Из хромистой и хромомарганцевокремнистой сталей изготовляют подшипники, работающие в интервале температур 60...300 °С. Эксплуатация подшипников при температуре, превышающей 100 °С, требует специальной термической обработки деталей, обеспечивающей стабильность размеров, но сопровождающейся снижением твёрдости, а также сопротивления контактной усталости стали.
Внутри указанного температурного интервала выбор хромистой или хромомарганцевокремнистой стали определяется толщиной стенок колец или диаметром тел качения (кремний и марганец увеличивают прокаливаемость стали, поэтому с ростом толщины изделий содержание этих элементов увеличивают). Обеспечение сквозной прокаливаемости колец подшипников с толщиной стенки более 10 мм и роликов диаметром более 22 мм достигается заменой стали ШХ15 сталью ШХ15СГ. Для колец с толщиной стенки более 30 мм в отечественной практике используют сталь ШХ20СГ, применяемую для изготовления деталей крупногабаритных подшипников. Граница размеров деталей, выше которой начинается применение стали ШХ20СГ или её аналогов, в разных странах различна. Это может быть объяснено различной прокаливаемостью, обусловленной особенностями технологии выплавки стали, а также различными схемами определения толщины стенок колец.
В связи с внедрением прогрессивной технологии термической обработки деталей железнодорожных подшипников качения - поверхностной закалки при глубинном индукционном нагреве - разработана сталь ШХ4 с регламентированной прокаливаемостью. По составу она отличается от стали ШХ15 пониженным содержанием элементов, влияющих на прокаливаемость стали, - марганца, кремния и хрома [5].
Кроме изготовления деталей подшипников сталь ШХ15, например, также применяется также для производства игл распылителей форсунок, обратных клапанов и подушек впрыскивающих систем, валиков топливных насосов, роликов, осей различных рычагов и других деталей, от которых требуется высокая твёрдость и хорошее сопротивление износу [4].
1.2 Химический состав шарикоподшипниковой стали По составу и свойствам шарикоподшипниковую сталь можно отнести к группе инструментальных сталей, но по применению она является конструкционной специального назначения [2].
В таблице 1 приведен химический состав некоторых марок шарикоподшипниковой стали: хромистой, хромомарганцевокремнистой и коррозионностойкой; для сравнения также указаны марки некоторых зарубежных производителей.
Проблема недостаточной прокаливаемости и теплостойкости изделий из хромистой и хромомарганцевокремнистой стали в ряде стран решена путём создания их модификаций, содержащих небольшие добавки молибдена, ванадия (на немецких предприятиях сортамент выплавляемой стали содержит марку X90CrMoV18, содержащую некоторое его количество) и вольфрама.
В некоторых странах с целью экономии импортируемого хрома разработано несколько модификаций подшипниковой стали, в которых его снижение компенсируется небольшими добавками молибдена с повышенным содержанием марганца [1].
Высокое содержание углерода в шарикоподшипниковых сталях обуславливает их высокую прочность после термической обработки и стойкость против истирания поверхностная твёрдость определяется концентрацией углерода в мартенсите, поэтому она одинакова для всех шарикоподшипниковых сталей. Твёрдость внутренних слоёв металла зависит от глубины прокаливаемости, которая в свою очередь зависит от содержания хрома. Хром замедляет превращение аустенита в перлит и тем самым увеличивает прокаливаемость стали, поэтому, чем крупнее детали подшипников, тем с большим содержанием хрома (0,4...1,65 %) применяют сталь для их изготовления.
Кроме того, высокая твёрдость карбидов хрома повышает износостойкость стали. Хром увеличивает устойчивость мартенсита против отпуска, уменьшает склонность стали к перегреву и придаёт ей мелкозернистую структуру. Но при высоком содержании хрома (>1,65 %) трудно получить однородную структуру, поэтому содержание хрома в шарикоподшипниковых сталях обычно не превышает 1,65 %.
Марганец, как и хром, увеличивает твёрдость и сопротивляемость стали истиранию. Но одновременно он способствует росту зерна при нагреве, в результате чего при термической обработке может образовываться крупнозернистая структура перегретой стали. Отрицательное влияние на вязкость шарикоподшипниковой стали оказывает кремний. Но марганец и кремний являются раскислителями, и чем выше их содержание, тем полнее раскислена сталь, поэтому присутствие этих элементов в шарикоподшипниковой стали всех марок желательно не более 0,35 %Si и 0,4 %Mn. Исключение составляют стали для изготовления деталей крупных подшипников типа ШХ15СГ. Повышенное содержание марганца и кремния в этой стали объясняется тем, что эти элементы уменьшают критическую скорость закалки, снижая тем самым склонность стали к короблению и тещинообразованию при закалке.
Влияние суммарного содержания легирующих элементов на долговечность подшипниковых сталей Повышение суммы легирующих до 5 % и выше может быть оправдано только в случаях особых эксплуатационных условий (коррозионная среда, повышенные рабочие температуры и др.), так как оно приводит к увеличению расходов на обрабатываемость и снижению долговечности (рисунок 1) по сравнению с теми же показателями традиционных подшипниковых сталей. Изменение содержания легирующих элементов оказывает различное влияние на свойства подшипников. Добавка молибдена оказывает положительное влияние на долговечность подшипников.
В Японии были испытаны подшипниковые стали типа ШХ15 с содержанием 1...1,5 % Si. Долговечность подшипников из этих сталей повышалась, однако они не получили применения из-за плохой обрабатываемости.
Предлагаемая замена стали ШХ15 на сталь с пониженным содержанием хрома (85Cr1Mo) не была осуществлена, несмотря на более короткое время отжига, из-за пониженной (8 мм) прокаливаемости. Эту сталь целесообразно применять там, где требуется улучшенная деформируемость в холодном состоянии.
В настоящее время наиболее полно удовлетворяют требованиям по содержанию вредных включений стали, произведённые методами ЭШП и ВДП. Однако этот металл слишком дорогой и, кроме того, не установлены экономически целесообразные требования по чистоте металла.
Среди вредных для шарикоподшипниковой стали элементов можно выделить фосфор, медь, никель, кислород, водород, азот, олово, свиней, мышьяк.
Фосфор увеличивает склонность стали к образованию крупнозернистой структуры при нагреве, повышает хрупкость и уменьшает прочность на изгиб, что в свою очередь увеличивает чувствительность стали к динамическим нагрузкам и склонность изделий к появлению закалочных трещин. В связи с этим содержание фосфора в металле ограничивают.
Медь, хотя и увеличивает твёрдость, предел прочности и прокаливаемость стали, является нежелательной примесью, так как с повышением содержания меди при горячей механической обработке увеличивается образование поверхностных трещин и надрывов.
Содержание никеля ограничивают в связи с тем, что его присутствие снижает твёрдость стали.
Олово, свинец и мышьяк, а также азот уменьшают сопротивляемость стали выкрашиванию.
Водород отрицательно влияет на качество стали ввиду того, что снижение растворимости его при снижении температуры металла вызывает повышенные локальные давления в металле, приводящие к образованию флокенов.
Сера влияет на свойства шарикоподшипниковой стали не однозначно. Отрицательное влияние сказывается в снижении устойчивости против истирания и усталостном разрушении при выходе на рабочую поверхность сульфидов. Однако образование сульфидной оболочки вокруг сульфидных включений при достаточном содержании серы уменьшает влияние этих включений на концентрацию напряжений и вследствие этого повышает сопротивление усталости. С увеличением отношения концентраций S/O до 3...5 стойкость подшипников возрастает. Этому способствуют и улучшение качества поверхности вследствие того, что сера улучшает обрабатываемость стали [2]. Некоторыми авторами доказано благоприятное влияние повышенного содержания серы (до 0,15 %) на долговечность и обрабатываемость подшипниковых сталей, хотя стали с таким содержанием серы пока не применяются.
Отдельно следует отметить влияние кислорода на свойства шарикоподшипниковой стали. Вообще его влияние на свойства подшипниковой стали, как и на свойства любой другой спокойной стали, проявляется через неметаллические включения, им формируемые. Неметаллические включения в подшипниковых сталях являются концентраторами напряжений и могут в некоторых случаях являться причиной появления микротрещин, образующихся от повышенной концентрации мозаичных напряжений, резкого охлаждения при закалке и др. [6]. Попадая на поверхность или в подповерхностный слой неметаллические включения при приложении нагрузок разрушаются, выкрашиваются и тем самым формируют очаг зарождения трещины. Вероятность разрушения включений зависит от их деформируемости, поэтому в стали подобного типа следует избегать формирование хрупких недеформируемых включений типа корунда и стремиться к образованию более пластичных частиц, например, силикатов (при равном содержании кислорода, подшипники из кислой мартеновской стали в 2,5 раза долговечнее, чем из электростали, так как в них вместо строчек крупных оксидов были глобули силикатов). Вероятность же попадания включений в поверхностный слой металла зависит от их количетсва, размера и формы, поэтому общее количество неметаллических частиц и их размер должны быть минимальны (учитывая, что количество включений тесно коррелирует с содержанием кислорода - содержание этого элемента также должно быть минимальным), а их форма - глобулярна. В случае когда в стали присутствет большое количество крупных включений, долговечность падает катастрофически: в 100 раз, когда оксидов крупнее 30 мкм стало больше в 10 раз. Чем выше твердость и модуль упругости включения, тем больше концентрация напряжений в нем, а следовательно хуже контактная прочность.
В подшипниковых сталях, полученных по обычной технологии, содержится около 0,005 % О2, 0,01...0,02 % N2, 0,0001...0,0005 % Н2. Кислород находится в виде окислов и его количество зависит от технологии раскисления. При вакуумировании содержание кислорода уменьшается до 0,002 %, а при ВДП - до 0,001 %.
Дата добавления: 2015-03-29; Просмотров: 3153; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |