КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Фермы покрытий
Железобетонные фермы применяют при пролетах 18, 24 и 30м, при шаге 6 или 12 м. В железобетонных фермах в сравнении со стальными расход металла почти вдвое меньше, но трудоемкость и стоимость изготовления немного выше. При пролетах 36 м и больше, как правило, применяют стальные фермы. Однако технически возможны железобетонные фермы и при пролетах порядка 60 м и более. При скатных, малоуклонных и плоских покрытиях применяют железобетонные фермы, отличающиеся очертанием поясов и решетки. Различают следующие основные типы ферм: сегментные с верхним поясом ломаного очертания и прямолинейными участками между узлами (рис. 14.17,а); арочные раскосные с редкой решеткой и верхним поясом плавного криволинейного очертания (рис. 14.17,б); арочные безраскосные с жесткими узлами в примыкании стоек к поясам и верхним поясам криволинейного очертания (14.17,в); полигональные с параллельными поясами или с малым уклоном верхнего пояса трапециевидного очертания (14.17,г); полигональные с ломаным нижним поясом (14.17,(д).
Рис.14.17. Схемы стропильных ферм
Рис. 14.18. Эпюры моментов в верхнем поясе арочной фермы
Высоту ферм всех типов в середине пролета обычно принимают равной 1/7—1/9 пролета. Панели верхнего пояса ферм, за исключением арочных раскосных, проектирует размером 3 м с тем, чтобы нагрузка от плиты покрытия передавалась в узлы ферм и не возникал местный изгиб. Нижний растянутый пояс ферм всех типов и растянутые раскосы ферм некоторых типов проектируют предварительно напряженными с натяжением арматуры, как правило, на упоры. Наиболее благоприятное очертание по статической работе имеют сегментные и арочные фермы, так как очертание их верхнего пояса приближается к кривой давления. Решетка этих ферм слабоработающая (испытывающая незначительные усилия), а высота на опорах срав- нительно небольшая, что приводит к снижению массы фермы и уменьшению высоты наружных стен. В арочных раскосных фермах изгибающие моменты от внеузлового загружения верхнего пояса уменьшаются благодаря эксцентриситету продольной силы, вызывающему момент обратного знака, что позволяет увеличить длину панели верхнего пояса и сделать решетку более редкой (рис 14.18). В арочных безраскосных фермах возникают довольно большие изгибающие моменты в стойках, поясах и для обеспечения прочности и трещиностойкости появляется необходимость в дополнительном армировании, однако эти фермы несколько проще в изготовлении, удобнее в зданиях с малоуклонной или плоской кровлей и при использовании межферменного пространства для технологических коммуникаций (при устройстве дополнительных стоечек над верхним поясом). Полигональные фермы с ломаным очертанием нижнего пояса более устойчивы на монтаже и не требуют специальных креплений, так как их центр тяжести расположен ниже уровня опор. Полигональные фермы с параллельными поясами или с малым уклоном верхнего пояса имеют некоторое экономическое преимущество в том отношении, что при плоской кровле создается возможность широко применять средства механизации кровельных работ. Для ферм всех типов уменьшение размеров сечений и снижение общей массы достигается применением бетонов высоких классов (С25/30—С45/50) и установлением высоких процентов армирования сечений поясов. Фермы рационально изготовлять цельными. Членение их на полуфермы с последующей укрупнительной сборкой на монтаже повышает стоимость. Фермы пролетом 18 м изготовляют цельными; пролетом 24 м — цельными или из двух полуферм; пролетом 30 м — из двух полуферм. Решетку полуфермы следует разбивать так, чтобы стык нижнего пояса для удобства монтажного соединения был выносным, т. е. расположенным между узлами. Чтобы обеспечить монтажную прочность участка нижнего пояса, у стыка устраивают конструктивные дополнительные подкосы (не учитываемых в расчете). Решетка ферм может быть закладной из заранее изготовленных железобетонных элементов с выпусками арматуры, которые устанавливают пред бетонированием поясов и втапливают в узлы на 30…50 мм, или изготовляемой одновременно с бетонированием поясов. Последний вариант получил большее распространение. Ширина сечения закладной решетки должна быть менее ширины сечения поясов, а ширина сечения решетки, бетонируемой одновременно с поясами, должна быть равна ширине сечения последних. Ширину сечения верхнего и нижнего поясов ферм из условий удобства изготовления принимают одинаковой, ширину сечения поясов при шаге ферм 6 м принимают 200—250 мм, а при шаге ферм 12 м — 300—350 мм. Армирование нижнего растянутого пояса должно выполняться с соблюдением расстояний в свету между напрягаемыми стержнями, канатами, спаренной проволокой, что обеспечивает удобство укладки и уплотнения бетонной смеси. Вся растянутая арматура должна охватываться замкнутыми конструктивными хомутами, устанавливаемыми с шагом 500 мм. Верхний сжатый пояс и решетки армируют ненапрягаемой арматурой в виде сварных каркасов. Растянутые элементы решетки при значительных усилиях выполняют предварительно напряженными. В узлах железобетонных ферм для надежной передачи усилий от одного элемента к другому создают специальные уширения — вуты, позволяющие лучше разместить и заанкерить арматуру решетки (рис. 14.19). Узлы армируют окаймляющими цельногнутыми стержнями диаметром 10—18 мм и вертикальными поперечными стержнями диаметром 6—10 мм с шагом 100 мм, объединенными в сварные каркасы. Арматуру элементов решетки заводят в узлы, а растянутые стержни усиливают на конце анкерами в виде коротышей, петель, высаженных головок. Надежность заделки проверяют расчетом.
Рис. 14.19. Армирование промежуточных узлов ферм а — в - верхнего пояса; г - нижнего пояса
Опорные узлы ферм армируют дополнительной продольной ненапрягаемой арматурой и поперечными стержнями, обеспечивающими надежность анкеровки растянутой арматуры нижнего пояса и прочность опорного узла по наклонному сечению. Кроме того, чтобы предотвратить появление продольных трещин при отпуске натяжения арматуры, ставят специальные поперечные стержни, приваренные к закладным опорным листам, и сетки. Пример армирования сегментной фермы пролетом 24 м приведен на рис.14.20. Напрягаемую арматуру нижнего пояса фермы предусматривают нескольких видов: из канатов класса, стержней из стали класса S800 и S1200, высокопрочной проволоки. Арматуру натягивают на упоры. Хомуты нижнего пояса выполняют в виде встречно поставленных П-образных сеток, окаймляющих напрягаемую арматуру. В опорном узле поставлены дополнительные продольные ненапрягаемые стержни диаметром 12 мм, заведенные в приопорную панель нижнего пояса, и поперечные стержни Æ10мм (рис. 14.21).
Рис.14.20. Конструкция поясов сегментной фермы
Рис.14.21. Конструкция узлов сегментной фермы
Расчет ферм выполняют на действие постоянных и временных нагрузок — от покрытия, массы фермы, подвесного транспорта. Нагрузки от массы покрытия считаются приложенными к узлам верхнего пояса, а нагрузки от подвесного транспорта — к узлам нижнего пояса. В расчете учитывают неравномерное загружение снеговой нагрузкой у фонарей и по покрытию здания. Учитывают также невыгодное для элементов решетки загружение одной половины фермы снегом и подвесным транспортом. В расчетной схеме раскосной фермы при определении усилий принимают шарнирное соединение элементов поясов и решетки в узлах. В расчетах прочности влиянием жесткости узлов фермы на усилия в элементах поясов и решетки в виду малости можно пренебречь. При определении изгибающих моментов от внеузловой нагрузки верхний пояс рассматривается как неразрезная балка, опорами которой являются узлы. Прочность сечений поясов и решетки рассчитывают по формулам для сжатых и растянутых элементов. Расчетная длина сжатых элементов в плоскости фермы и из плоскости фермы различна (табл. 14.3).
Таблица 14.3. Расчетная длинна l 0 сжатых элементов фермы
Примечание: l — расстояние между центрами смежных закрепленных узлов; e0 — эксцентриситет продольной силы; h — высота сечения верхнего пояса; b, bd- ширина сечения верхнего пояса и стойки.
Безраскосные сегментные фермы по схеме работы близки к железобетонным аркам с затяжкой, удерживаемой подвесками. Бетон С30/35 – С40/45. Предварительно напряженную арматуру нижнего пояса предусматривают из стержневой упрочненной периодического профиля класса S500, горячекатаной стали класса S800, холоднотянутой проволоки диаметром 5мм (рис. 14.22).
Рис.14.22. Конструкция безраскосной сегментной фермы
Фермы с параллельными поясами изготавливают пролетом 18, 24 и 30м при шаге колонн 6 и 12 м (рис. 14.23). Для компенсации прогиба ферм верхнему поясу придается уклон путем увеличения поперечного сечения на 20…40мм.
Рис.14.23. Конструкция фермы с параллельными поясами Растянутые раскосы при усилиях до 300кН проектируют без предварительного напряжения продольной рабочей арматуры, а при усилиях свыше 300кН – предварительно напряженными со стержневой арматурой, натягиваемой электротермическим способом. Растянутые предварительно напряженные раскосы анкеруются в узлах ферм выпуском рабочих стержней арматуры, на концах которых приварены коротыши. Ширина верхнего и нижнего поясов принята одинаковой для ферм пролетом 18 и 24м: при шаге 6м – 240мм и при шаге 12м – 280мм. Арматуру опорного узла фермы на основании исследований можно рассчитывать по схеме (рис. 14.24а.) Учитывается, что понижение расчетного усилия в напрягаемой арматуре, которое происходит из-за недостаточной анкеровки в узле, компенсируется работой на растяжение дополнительной продольной ненапрягаемой арматуры и поперечных стержней. Площадь сечения продольной ненапрягаемой арматуры: (14.6) где N — расчетное усилие приопорной панели.
Рис.14.24. К расчету узлов ферм а — опорного узла; б — промежуточного узла
Расчетное суммарное усилие нормальных к оси поперечных стержней Nw на участке l2 (от грани опоры до внутренней грани опорного узла) разложим на два направления: горизонтальное (Nw×ctg(α)) и наклонное; здесь α — угол наклона линии АВ, соединяющей точку А у грани опоры с точкой В в примыкании нижней грани сжатого раскоса к узлу. Из условия прочности в наклонном сечении по линии отрыва АВ (14.7) определяется усилие (14.8) площадь сечения одного поперечного стержня (14.9) где — расчетное усилие в продольной напрягаемой арматуре; (14.10) — расчетное усилие в продольной ненапрягаемой арматуре; (14.11) n — число поперечных стержней, пересекаемых линией АВ (за вычетом поперечных стержней, расположенных ближе 10 см от точки А); , —длина заделки в опорном узле за линией АВ продольной напрягаемой и ненапрягаемой арматурой; lp, lan — длина заделки, обеспечивающая полное использование прочности продольной напрягаемой и ненапрягаемой арматуры. Значение lp при классе тяжелого бетона C20/30 и выше принимают 1500 мм для семипроволочных канатов, 1000 мм для высокопрочной проволоки диаметром 5 мм, 35Æ для стержневой арматуры класса S800. Значение lan для арматуры класса S400 принимают 35Æ. Прочность опорного узла на изгиб в наклонном сечении проверяют по линии АС (соединяющей точку А у грани опоры с точкой С у низа сжатой зоны на внутренней грани узла) по условию, что момент внешних сил не должен превышать момента внутренних усилий: (14.12) где QA — опорная реакция; l — длинна опорного узла; а — расстояние от торца до центра опорного узла
Высота сжатой зоны в наклонном сечении: (14.12) Арматуру промежуточного узла рассчитывают по схеме рис. 14.24 б. В этом узле также учитывают, что понижение расчетного усилия в арматуре растянутого раскоса на длине заделки компенсируется работой на растяжение поперечных стержней. Из условия прочности по линии отрыва АВС (14.13) определяют Nsw и площадь сечения одного поперечного стержня (14.14) где N — расчетное усилие в растянутом раскосе; φ — угол между поперечными стержнями и направлением растянутого раскоса; n — число поперечных стержней, пересекаемых линией АВС; при этом поперечные стержни, располагаемые на расстоянии меньше 100 мм от точек А и С, а также имеющие в пределах вута заделку менее 30Æ (с учетом загнутых участков поперечной арматуры), в расчет не включаются; l 1 — длина заделки арматуры растянутого раскоса за линией АВС; k 2 — коэффициент, учитывающий особенность работы узла, в котором сходятся растянутый и сжатый подкосы: для узлов верхнего пояса k 2 — 1; для узлов нижнего пояса, если в одном из примыкающих к узлу участке растянутого пояса обеспечивается 2-я категория требований по трещиностойкости и при наличии в узле сжатых стоек или раскосов, имеющих угол наклона к горизонту более 400, k 2 — 1,1; в остальных случаях k 2 — 1,05; а —условное увеличение длины заделки растянутой арматуры с анкерами: а=5Æ — при двух коротышах; а=3Æ — при одном коротыше и петле; а=2Æ — при высаженной головке; l an — заделка арматуры растянутого раскоса, обеспечивающая полное ее использование по прочности при тяжелом бетоне класса C25/30 и выше и арматуре класса S400 l an =35Æ; k 1=σs/fs σs —напряжение в арматуре растянутого раскоса от расчетной нагрузки.
Поперечные стержни промежуточного узла, в котором сходятся два растянутых элемента решетки, рассчитывают по формуле (14.14) последовательно для каждого элемента решетки, считая, что элементы, расположенные рядом, сжаты. Расчет по трещиностойкости растянутого пояса раскосной фермы необходимо выполнять с учетом изгибающих моментов, возникающих вследствие жесткости узлов. Эти моменты в фермах со слабоработающей решеткой достаточно точно могут быть определены из рассмотрения нижнего пояса как неразрезной балки с заданными осадками опор. Последние находят по диаграмме перемещений стержней фермы. Расчет фермы выполняют также на усилия, возникающие при изготовлении, транспортировании и монтаже. В расчетной схеме безраскосной фермы в расчетах прочности и трещиностойкости принимают жесткое соединение поясов и стоек в узле. Усилия М, Q, N определяют как для статически неопределимой системы с замкнутыми контурами. Здесь возможны как строгие, так и приближенные способы расчета. Для расчета ферм на ЭВМ разработаны программы, по которым можно выбрать оптимальный вариант конструкции.
Дата добавления: 2015-03-29; Просмотров: 6504; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |