Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Работа насоса на сеть




Производительность и напор центробежного насоса зависят от числа оборотов рабочего колеса. Из уравнения следует, что производительность насоса прямо пропорциональна радиальной составляющей абсолютной скорости на выходе из колеса.

Характеристика центробежного насоса

Для правильной эксплуатации насоса не­обходимо знать, как изменяются напор, КПД и мощность, потреб­ляемая насосом, при изменении его подачи, т. е. знать характери­стику насоса, под которой понимается зависимость напора, мощности и КПД от производительности насоса при постоянной частоте вращения.

Из зависимости видно, что с увеличением производительности напор насоса уменьшается, потребляемая мощность возрастает, а кпд проходит через максимум.

При постоянном числе оборотов рабочего колеса, когда лопатки его загнуты в направлении, обратном направлению вращения колеса, напор насоса падает с увеличением производительности и при некотором предельном значении может стать равным 0.

Потребляемая насосом мощность не будет равна нулю на всем интервале из-за наличия различного рода потерь, на компенсацию которых необходимо затрачивать энергию. Эти потери возрастают с увеличением производительности насоса, поэтому график имеет характер монотонно возрастающей функции с началом в некоторой точке на оси ординат.

Участок кривой, где напор возрастает с увеличением производительности, соответствует неустойчивой работе насоса.

Наиболее благоприятный режим эксплуатации центробежного насоса при данном числе оборотов соответствует максимуму на кривой кпд.

 

Графические зависимости между напором, к. п. д. и производительностью насоса при различных числах оборотов колеса называют универсальными характеристиками.

Пользуясь универсальной характеристикой, можно установить пределы работы насоса (соответствующие максимальному значению кпд.)

и выбрать наиболее благоприятный режим его работы.

Линии ограничивают области, внутри которых

кпд насоса имеет значение не меньшее, чем указанное на границе области.

Линия р-р соответствует максимальным значениям кпд при данных числах оборотов рабочего колеса.

 

При выборе насоса необходимо учитывать характеристику сети, т. е. трубопровода и аппаратов, через которые перекачиваются жидкости.

Характеристика сети выражает зависимость между расходом жидкости и напором, необходимым для перемещения жидкости по данной сети. Характеристика сети описывается уравнением параболы, т.к. потери напора пропорциональны квадрату расхода жидкости.

Насос данной насосной установки работает на таком режиме, при котором потребный напор равен напору насоса, т. е. при котором энергия, потребляемая при движении жидкости по трубопроводам установки (потребный напор) равна энергии, сооб­щаемой жидкости насосом (напор насоса). Для определения режима работы насоса следует на одном и том же графике в одинаковых масштабах нанести характе­ристику насоса и насосной установки.

Равенство напора насоса и потребного напора установки получается для режима, определяемого точкой А пересечения характеристик. Покажем, что насос не может работать в режиме, отлич­ном от режима А. Предположим, что насос работает в режиме В. В этом случае напор, сообщаемый насосом жидкости, равен Нв, напор, расходуемый при движении жидкости по трубопроводам установки Hвпотр<Hв. Таким образом, энергия, расходуемая при движении жидкости по трубопроводам установки, меньше энергии, сообщаемой ей насосом. Избыток энергии в жидкости идет на приращение ее кинетической энергии. Следовательно, скорость жидкости увеличивается. Увеличение скоро­сти приводит к увеличению расхода, которое будет происходить до тех пор, пока он сравняется с QA. Если подача насоса больше QA (точка С), то сообщаемый насосом напор меньше потребляемого. Недостаток энергии восполняется за счет собственной кинетической энергии жидкости. Это приводит к уменьшению скорости движения и, следовательно, к уменьшению расхода до QA.

 

Если требуется более высокая производительность, то необходимо либо увеличить число оборотов электродвигателя, либо заменить данный насос на насос большей производительности. Увеличение производительности может быть достигнуто также путем уменьшения гидравлического сопротивления сети. В этом случае рабочая точка А переместится по характеристике насоса вправо.

Насос должен быть выбран так, чтобы рабочая точка соответствовала требуемым производительности и напору.

Рассмотрим частные случаи насосных установок.

 

  1. Приемный и напорный уровни совпадают. При этом геометриче­ский напор установки

НГ =0, р" = р' и характеристика насосной установки представляет собой кривую . Весь напор затрачивается на преодоление гидравлического сопротивле­ния в системе. Наносим на характеристику установки характеристику насоса. Пересечение кривой напоров Н насоса с характери­стикой установки дает рабочую точку А, определяющую режим работы насоса.

2. Напорный уровень находится ниже приемного. Геометрический напор при этом отрицателен, поэтому его следует откладывать вниз от оси абсцисс графика. Пусть р" = р'. Приемный уровень схемы установки совмещаем с осью абсцисс. Построив от прямой ВС вверх кривую потерь , получим характери­стику установки. На пересечении кривой напоров характеристики насоса с характеристикой насосной установки находим точку А, которая определяет режим работы насоса. Точка пересечения харак­теристики установки с осью абсцисс дает расход Q9 в трубопроводе при отсутствии насоса. Включение насоса увеличило расход в системе на величину Qa-Qо




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 2561; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.