КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Энергия электронов
Неионные (чистые) электроны Как источник электрической энергии, неионные электронные пары (дуплеты) присутствуют во вселенной в огромных количествах. Они рождаются в излучениях звездной плазмы. Если фоновые электронные пары выводятся из покоя/равновесия - начинают сближаться или разбегаться в разные стороны, они порождают магнитную и электрическую энергию. От уровня возбуждения (скорость, частота вибрации) зависит энергетический уровень этой среды. Практические методы их возбуждения включают движение катушки индуктивности мимо магнита или наоборот. Лучший способ - это пульсирование (резонирующая индукция) магнитных полей и волн возле катушек. В индукционных (катушечных) системах, магнитные и токовые (ампераж) характеристики - один пакет. Напрашивается вывод, что электроны в состоянии покоя (натуральное неионное состояние) существуют в парах (дуплетах). Когда при возбуждении электрон вынужден удаляться от "напарника", один электрон вращается вправо - (получает правый спин) порождая электрический потенциал (Вольт), а другой вращается влево, порождая магнитную энергию (Ампераж), и один становится негативнее другого. Дальше это позволяет полагать, что когда эти два электрона воссоединяются, мы получаем полезное электричество (Вольт х Ампер = Ватт). До сих пор эта идея полностью отсутствовала в нашей базе знаний, поэтому можно считать предыдущее понятие тока несовершенным.
Энергия Метод хранения Единица энергии Определ. единицы
Электрическая Конденсатор/Кулон Вольты Единицы потока Спин /Гравитация Момент Момент вращения Эрг Магнитная Катушки Амперы Единицы потока Тесла, Гаусс, Гамма, Остэд (от столкновения или сопротивления) Световая Лазер Люкс Фотон/гамма-излучение Тепло Различные Цельсиус/Фаренгейт Температура
Электроны с левым спином (кручением) порождают электрическую энергию. С правым спином - магнитную. При сталкновении электронов выделяется видимый свет и тепло.
Полезные схемы, предложения по постройке рабочего аппарата
1. В качестве источника резонирующей индукции можно использовать плазменный шар (напр. "Illumna-Storm" из магазина Radio Shack). Он даст около 400 милиГаус магнитной индукции. 1 милигаус эквивалентен 100 вольт от магнитной индукции. 2. Сделайте пластмассовый каркас диаметром 128 - 180 мм. 3. Возьмите 10 метров толстого многожильного провода в изоляции, такой как используют для подключения динамиков (прим. PKJ: поскольку "многожильный провод" несколько размытое определение, то лучше использовать провод с большим кол-вом медных жил внутри, т.к. Дон отмечает, что отдаваемая мощность увеличивается с каждым витком, возможно, что каждый медный проводник в многожильном проводе работает как индивидуальная обмотка, подключенная паралельно) 4. Намотайте катушку из 10-15 витков и оставьте по 1 метру свободные концы для подключения. Закрепите начало и конец катушки на каркасе (расплавленым ПВХ, пластиковые зажимы и тп) 5. Эта катушка обозначена на схеме как "L - 2". 6. Установите катушку как корону на верхушку шара разрядной лампы, и у вас есть отличная резонирующая система (air-core = без сердечника) 7. В качестве набора конденсаторов (capacitor bank), показанного на схеме, поставьте два или более конденсаторов, расчитаных на напряжение 5000 вольт и более. Я пробовал от двух и более конденсаторов на 34 мкф каждый. 8. Подключите всё по схеме как показано в левом верхнем углу сопровождающей Полезные схемы страницы 9. Ограничивающий Вольт-Амперы резисторы параллельно выходу трансформатора нагрузки, для регулировки выходного уровня и необходимой частоты.
Cоветы Дона Смита по схеме ниже: Достаньте книгу "Handbook of Electronic Tables and Formulas" (Сборник таблиц и формул по электронике), из-во Sams, ISBN 0-672-22469-0, также вам понадобится измеритель емкости и индуктивности (LCR meter). Глава 1 этой книги содержит важные константы для расчета временно-частотных характеристик и набор графиков реактивностей в стиле номографов ("номограф" обычно содержит три параллельных шкалы с делениями для разных переменных, используется для нахождения искомого значения на пересечении двух других переменных величин). Эти графики позволяют легко и быстро прикинуть и расчитать емкость, индуктивность и сопротивление при известных двух других параметрах цепи. Напр., если вход изолирующего трансформатора (надо понимать, что соответственно и выход с нагрузкой) должен работать от переменного тока с частотой 60 Гц, это 60 положительных циклов и 60 отрицательных циклов = всего 120 циклов в секунду. Измерьте индуктивность входной обмотки трансформатора в Генри, пометьте на номографе реактивностей это значение, пометьте 120 Гц на графике и соедините эти точки прямой линией. Точки пересечения этой линией линии Фарад и линии Ом дает нам эти две нужные величины. Выберите резистор нужного сопротивления и подключите его параллельно входной (первичной) обмотке трансформатора. Теперь надо подобрать конденсатор компенсации реактивной мощности (или набор из нескольких кондеров). Приведенная далее формула поможет посчитать емкость. Известна емкость конденсатора в цепи (параллельный набор), а также известен желаемый потенциал (вольтаж) пульсации выходного трансформатора (вторичной обмотки) Один Фарад емкости это один Вольт в секунду (или 1 Кулон). Поэтому чтобы держать цепь заряженой до определенного уровня все время, сколько раз её надо пополнить? (автор приводит ассоциацию с ведром воды) Если нужно поддерживать 120 Вольт, сколько нужно Кулонов заряда?
Требуемое напряжение / Емкость в мкФ = Требуемая частота в Гц. Например 120 Вольт/ 0,004 (4000 МкФ) = 30 000 Гц Теперь обратимся к графику реактивности, о котором шла речь ранее, и найдем сопротивление резистора, который нужно подключить к полюсам конденсатора компенсации реактивной мощности. Для для ограничения напряжения и снижения транзитивных бросков требуется подключение к заземлению. Нужно две земли: одна на компенсирующем конденсаторе, а другая на входной части изолирующего трансформатора. Можно использовать готовые варисторы, разрядники, и разъединители, расчитанные на ваше рабочее напряжение и ток. Siemens, Citel America и др. производят большой ассортимент этих компонентов. Варисторы выглядят как плоские конденсаторы размером с монету. Эти ограничители напряжения помечены как "V - 1" в последующем тексте. Очевидно что в предлагаемой конфигурации имеется несколько отдельных закрытых (замкнутых)цепей: цепь источника питания, высоковольтный модуль, набор конденсаторов для компенсации рактивной мощности вместе со входной обмоткой изолирующего трансформатора. И наконец, выходная обмотка этого трансформатора и нагрузка. Ни один активный электрон от источника питания (батарея) не проходит через все устройство в нагрузку на выходе. В любой момент, когда магнитный поток меняется, меняется и количество активных электронов. Поэтому, управляя степенью магнитного потока (колебаний), мы управляем активностью электронов (потенциалом). Активные электроны в точке А, это не те же электроны в точке Б или В и т.д. Если степень магнитного потока (частота в герцах) меняется, то меняется и число возбужденных электронов. Это не нарушает никакие законы природы, и если нужно, производит больше энергии чем потребляет. Удобный высоковольтный модуль - питающийся от 12 вольт DC трансформатор для неоновых ламп (наружной рекламы) для краткости - ВВ трансформатор. Компенсирующий конденсатор должен быть как можно большей емкости (мкФ), так как это позволит понизить рабочую частоту. ВВ трансформатор осциллирует на частоте около 30.000 Гц. На компенсирующем конденсаторе мы понижаем частоту, чтобы согласовать ее с рабочей частотой входной обмотки изолирующего трансформатора. Другие удобные для использования источники высокого напряжения - автомобильные катушки зажигания, телевизионные трансформаторы развертки (анодное напряжение трубки), модули статики в лазерных принтерах и многие другие уст-ва. Всегда надо понижать частоту на компенсирующем конденсаторе и корректировать ее, если нужно, на входе изолирующего трансформатора. Этот транс начинает работать при получении импульсов. Здесь же нужно позаботиться про ампераж (ток). Неправильная конструкция, порождающая гистерезис, выражается в тепловых потерях, и может уничтожить трансформатор, если он перегружен. Композитный (порошковый) сердечник вместо обычного трансформаторного железа позволяет лучше выдерживать перегрузки и остается холодным. Резонирующая Электромагнитная Энергосистема Заявка на патент 1994
Источник питания: B-1 - батарея 12В 7А/ч; D-1 - Диод для защиты от обратных импульсов; L-1 - ВВ трансформатор для неоновых ламп Кондиционирование мощности: С - 1 - Конденсатор или набор, 8000 мкф 480в для постоянного напряжения, R-1 - резистор для подгонки степени подкачки электронов и частоты пульсации на конденсаторе, поддерживает нужное рабочее напряжение. Управление напряжением: V-1 - Варистор (480в на 60 ампер), ограничивает напряжение для входной обмотки L-2 трансформатора Выходной трансформатор: изолирующего типа (L-2/L-3) - 28,8 кВА, с резистором R-2, корректирующим частоту 120 Гц (60 пульсов + и 60 пульсов - в секунду) на выходе трансформатора под нужную во вторичке / нагрузке (60 Гц) Полезная формула для расчета частотно-временных параметров: T=R*C и T= L/R, где Т - частота в Гц, С - емкость в мкФ, L - индуктивность в миллигенри, R - сопротивление в Омах
Информация, приведенная вверху, касается маленькой модели "Чемоданчик" демонстрировавшейся на Тесловской конвенции 1996 года, и была подана Доном в качестве воркшопа. Это устройство было очень примитивной версии. Сейчас новая версия питается от атомной батареи и выходная мощность достигает гигаватт. Атомная батарея требуется низкого уровня и поэтому излучает не более радиации, чем радиевая краска на светящемся циферблате часов. Коммерческие энергетические агрегаты размеров тех, что на ГЭС на Боулдерской плотине сейчас устанавливаются в нескольких странах мира. Из соображений личной безопасности и контрактных обязательств Дона, он не выложил всю информацию.
Дата добавления: 2015-04-24; Просмотров: 2262; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |