КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дифракция на щели
Теоретическое введение Используемая литература [1] § 31.2; [2] §§ 24.1-24.4; [3] § 3.33; [5] §§ 84-86; [7] §§ 171-173. Лабораторная работа 3-02 Изучение дифракции монохроматического лазерного излучения на дифракционной решётке
Цель работы: исследование дифракции монохроматического излучения гелий-неонового лазера на дифракционной решетке и определение длины волны лазерного излучения. Дифракцией называется отклонение волн от прямолинейного распространения при их взаимодействии с препятствием. Дифракция наблюдается для волн любой природы. Благодаря дифракции волны могут попадать в область геометрической тени: звук слышен за углом дома, радиоволны могут распространяться далеко за пределы прямой видимости антенны передатчика, а в центре тени от освещенного диска наблюдается светлое пятно. Необходимым условием наблюдения дифракции является соизмеримость длины волны с размерами препятствия. Так, например, мы не можем видеть, что происходит за углом дома, но можем слышать: потому что длина волны света много меньше размеров препятствия (λ≈5.10-7м<< l), а длина волны звука – того же порядка. При дифракции (как и при интерференции) происходит перераспределение интенсивности в результате суперпозиции волн. В сущности, между дифракцией и интерференцией нет принципиальных различий: по историческим причинам суперпозицию конечного числа волн называют интерференцией, а суперпозицию бесконечного числа волн – дифракцией. Для анализа распространения света Гюйгенс предложил простой метод, названный впоследствии принципом Гюйгенса:каждая точка волнового фронта является вторичным точечным источником сферических волн. Волновой фронт – это совокупность точек пространства, до которых дошла волна к данному моменту времени. Французский физик О. Френель дополнил этот принцип. В соответствии с принципом Гюйгенса-Френеля: 1. Каждый элемент поверхности волнового фронта служит источником вторичной сферической волны, амплитуда которой пропорциональна площади элемента. 2. Все вторичные источники когерентны и излучают в одной и той же фазе, если расположены на одной и той же волновой поверхности. 3. Вторичные источники излучают преимущественно в направлении нормали к волновому фронту. Пусть на бесконечно длинную щель падает плоская световая волна. В соответствии с принципом Гюйгенса-Френеля освещенную щель можно рассматривать как множество точечных когерентных источников волн. Поместим за щелью экран, расстояние до которого достаточно велико по сравнению с шириной щели. Это условие означает, что в данную точку Р экрана попадет параллельный пучок лучей, отклонившийся на угол φ (рис. 2.1). Оптическая разность хода АС=Δ крайних лучей из этого пучка определяется из треугольника ABC (): , (2.1) где а =АВ – ширина щели. Разобьем щель на зоны Френеля, параллельные щели: оптическая разность хода лучей, идущих от соседних зон, равна половине длины волны, то есть колебания в них происходят в противофазе. Если при наблюдении из точки Р в щели помещается четное число зон Френеля: , (2.2) то их вклады взаимно погасятся и в точке Р будет наблюдаться минимум интенсивности света. Таким образом, из (2.1) и (2.2) получим условие дифракционных минимумов при дифракции на щели: ; (m =1, 2, 3,…) (2.3) где угол – направление на минимум с номером m. Если разность хода крайних лучей равна нечетному числу полуволн: , (2.4) то при наблюдении из точки Р в щели помещается нечетное число зон Френеля. Каждая зона гасит соседнюю, а оставшаяся последняя посылает свет в направлении и образует максимум. Поэтому условие максимумов имеет вид: ; (m =1, 2, 3,…) (2.5) Соображения, приводящие к выражениям (2.3) и (2.5), имеют, вообще говоря, приближенный характер, поскольку мы применили метод зон Френеля для бесконечно удаленных точек наблюдения, рассматривая дифракцию в параллельных лучах, однако условие минимумов (2.3) оказывается точным. Что же касается «центральной» точки О экрана, расположенной против центра щели, то в нее попадает пучок неотклонённых лучей, ортогональных щели. Все они имеют одинаковую фазу, т. е. должны усиливать друг друга. Поэтому в условии минимумов (2.3) исключено значение m =0, соответствующее точке О. Значение m =0 исключено и из условия максимумов (2.5), поскольку этот максимум должен был бы расположиться между центральным максимумом и первым минимумом, что невозможно. Точные расчёты показывают, что при наложении всех вторичных волн, идущих под углом j от каждой точки щели, с учётом их амплитуд и фаз, амплитуда результирующего колебания имеет вид: . (2.6) Для точки О, лежащей против центра щели, угол φ=0 и Аφ=А0. Этот результат следует, как мы видели, и из физических рассуждений. Следующий за ним первый максимум можно найти при решении уравнения , что даёт: . (2.7) Из приближенного выражения (2.5) при m =1 следует коэффициент 1.5 вместо правильного 1.43, что приводит к погрешности всего лишь в 5%. Для других максимумов согласие с приближенной формулой становится еще лучше. При углах φ, удовлетворяющих условию (m =1, 2, 3,...), амплитуда , как видно из (2.6), равна нулю. Это условие определяет положение минимумов, как и было получено выше в (2.3). На рис.2.2 представлена зависимость интенсивности света от угла дифракции.
Дата добавления: 2015-03-29; Просмотров: 673; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |