КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Поверхностный аппарат клетки
Основные структурные компоненты клетки Сравнение растительной и животной клетки
Общие признаки 1. Единство структурных систем - цитоплазмы и ядра. 2. Сходство процессов обмена веществ и энергии. 3. Единство принципа наследственного кода. 4. Универсальное мембранное строение. 5. Единство химического состава. 6. Сходство процесса деления клеток.Признаки Растительная клетка Животная клетка Пластиды Хлоропласты, хромопласты, лейкопласты Отсутствуют Способ питания Автотрофный (фото-трофный, хемотрофный) Гетеротрофный (сапротрофный, паразитический). Синтез АТФ В хлоропластах, митохондриях В митохондриях Расщепление АТФ В хлоропластах и всех частях клетки, где необходимы затраты энергии Во всех частях клетки. где необходимы затраты энергии Клеточный центр У низших растений Во всех клетках Целлюлозная клеточная стенка Расположена снаружи от клеточной мембраны Отсутствует Включения Запасные питательные вещества в виде зерен крахмала, белка, капель масла; вакуоли с клеточным соком; кристаллы солей Запасные питательные вещества в виде зерен и капель (белки, жиры, углевод гликоген); конечные продукты обмена, кристаллы солей; пигменты Вакуоли
Крупные полости, заполненные клеточным соком - водным раствором различных веществ, являющихся запасными или конечными продуктами. Осмотические резервуары клетки Сократительные, пищеварительные, выделительные вакуоли. Обычно мелкие Цитоплазма – представляет собой содержимое клетки, исключая ядерный аппарат (ядро). В состав цитоплазмы входит гиалоплазма, система эндомембран (мембранные органоиды) и не органоиды, в некоторых клетках цитоплазма содержит цитоплазматические включения.
Гиалоплазма – является желеподобным веществом. В ней локализуются и функционируют все органоиды клетки. Гиалоплазма содержит множество ионов и низкомолекулярных белков (метаболитов) и высокомолекулярных белков. Этот компонент является микросредой, которая обеспечивает и регулирует процессы, протекающие в цитоплазме. Состав: 90% - вода, 10% - белки и водные растворы органических и неорганических веществ клетки.
Система эндомембран – состоит из мембранных органоидов с их содержимым. К этим органоидам относятся эндоплазматическая сеть, комплекс Гольджи, микротельца и митохондрии.
Поверхностный аппарат клетки – является универсальной субсистемой, имеется у всех клеток. Поверхностный аппарат клетки определяет границу между цитоплазмой и внеклеточной средой, регулирует взаимодействие клетки с внешней средой.
В составе поверхностного аппарата клетки выделяют 3 компонента:
1. Плазматическую мембрану, или плазмолемму
2. Надмембранный комплекс, или гликокаликс
3. Субмембранный комплекс или субмембранный опорно-сократительный аппарат.
Плазмолемма – является структурной и функциональной основой поверхностного аппарата клетки и представляет собой сферически замкнутую биомембрану. Структура плазмолеммы соответствует жидкостно-мозаичной модели мембран.
Надмембранный комплекс, или гликокаликс является наружней частью поверхностного аппарата клетки, располагаясь над плазмолеммой.
В состав надмембранного комплекса включают:
1. Углеводные части гликолипидов и гликопротеидов
2. Периферические мембранные белки, расположенные на наружней части билипидного слоя
3. Интегральные и полуинтегральные белки, имеющие наружную зону, выступающую над билипидном слоем.
4. Специфические углеводы, не связанные химически с компонентами мембраны, локализованные над билипидном слоем.
5. Субмембранный комплекс или субмембранный опорно-сократительный аппарат – располагается под плазмолеммой, с внутренней стороны поверхностного аппарата клетки. В состав субмембранного опорно-сократительного аппарата выделяют периферическую гиалоплазму и опорно-сократительную систему.
Периферическая гиалоплазма – является специализированной частью цитоплазмы, расположенной под плазмолеммой. Это жидкое высоко дифференцированное гетерогенное вещество, которое содержит в растворе разнообразные низкомолекулярные и высокомолекулярные молекулы. Периферическая гиалоплазма фактически является микросредой, в которой протекают общие и специфические процессы метаболизма. Она обеспечивает реализацию многих функций поверхностного аппарата клетки. В периферической гиалоплазме располагается второй компонент субмембранного опорно-сократительного аппарата - опорно-сократительная система.
Опорно-сократительная система состоит из:
- Микрофибрилл, или микрофиламентов
- Скелетных фибрилл, или промежуточных филаментов
- Микротрубочек
Микрофиблиллы - нитивидные структуры, состоящие из:
1. Сократительного белка актина
2. Миозина
Молекулы глобулярного актина образуют протофибриллы, формируют двойную спираль, к которой присоединяются белки. Для полимеризации необходимы: АТФ, высокая концентрация ионов Mg и белок филамин. Деполяризация актиновых миотфибрилл происходит при участии белка профилина. Процессы полимеризации и деполяризации происходят параллельно на противоположных концах миофибрилл.
В опорно-сократительной системе имеются миозиновые микрофибриллы. Особенностями их строения является наличие “головок”, способных расщеплять АТФ. В ходе этого процесса головка присоединяются к актиновым микрофиламентам по отношению к миозиновым микрофилиментам.
Скелетные фибриллы - образуются путем полимеризации отдельных белковых молекул. Скелетные фибриллы разного типа клеток состоят из разных белков. В эпителиальных клетках скелетные фибриллы формируются белком прекератином и называются тонофибриллами. Все скелетные фибриллы устойчивы к физическим и физическим агентам. Они выполняют опорную функцию и являются элементом цитоскелета. Число и длина скелетных фибрилл регулируется клеточными механизмами, изменения которых может вызывать аномалии функции клеток.
Микротрубочки - занимают наиболее отдаленное от плазмолеммы положение. Стенки микротрубочек сформированы белками тубулинами. Структурной единицей микротрубочек являются димеры, состоящие из молекул -тубулина и b -тубулина.
Микротрубочки включают и другие виды белков, которые называются МАР-белки. Эти белки обеспечивают эффективное функционирование микротрубочек. Формирование микротрубочек основано на процессе полимеризации тубулиновых димеров. Сначала образуются тубулиновые нити – протофиламенты, которые взаимодействуют между собой, образуя стенку микротрубочки. Как правило стенка микротрубочки состоит из 13 протофиламентов.
В клетке полимеризация микротрубочек происходит путем самосборки при определенных условиях. Таким условием является наличие ГТФ (аналог АТФ), ионов магния, отсутствие кальция. Формирование новых микротрубочек осуществляется в центрах организации микротрубочек.
Наиболее мощным центром организации микротрубочек являются центриоли
Дата добавления: 2015-04-24; Просмотров: 899; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |