Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Функции репитеров и концентраторов




Репитеры и концентраторы Ethernet и Fast Ethernet

Использование репитеров и концентраторов (хабов) в сети Ethernet не является обязательным. Небольшие сети на основе сегментов 10BASE2 или 10BASE5 вполне могут обойтись без них. Для сетей из нескольких таких сегментов необходимы простейшие репитеры. А при выборе в качестве среды передачи витой пары (10BASE-T) или оптоволоконного кабеля (10BASE-FL) уже необходимы концентраторы (если, конечно, в сеть объединяются не два компьютера, а хотя бы три). В сети Fast Ethernet применение концентраторов обязательно.

Репитеры (повторители), как уже отмечалось, ретранслируют приходящие на них (на их порты) сигналы, восстанавливают их амплитуду и форму, что позволяет увеличивать длину сети. То же самое делают и простейшие репитерные концентраторы. Но помимо этой основной функции концентраторы Ethernet и Fast Ethernet обычно выполняют еще ряд функций по обнаружению и исправлению некоторых простейших ошибок сети. К этим ошибкам относятся следующие:

  • ложная несущая (FCE – False Carrier Event);
  • множественные коллизии (ECE – Excessive Collision Error);
  • затянувшаяся передача (Jabber).

Все эти ошибки могут вызываться неисправностями оборудования абонентов, высоким уровнем шумов и помех в кабеле, плохими контактами в разъемах и т.д.

Под ложной несущей понимается ситуация, когда концентратор получает от одного из своих портов (от единичного абонента или из сегмента) данные, не содержащие ограничителя начала потока данных, то есть преамбула пакета началась, но в ней нет признака начала кадра.

Если после старта передачи кадр не начался в течение заданного временного интервала (5 мкс для Fast Ethernet, 50 мкс для Ethernet), то концентратор посылает сигнал "Пробка" всем остальным портам, чтобы они обнаружили коллизию. Длительность этого сигнала также составляет 5 или 50 мкс. Затем выявленный порт переводится в состояние "Связь неустойчива" (Link Unstable) и отключается. Обратное включение порта концентратором может произойти только при поступлении от него правильного пакета, без ложной несущей.

Ситуация множественных коллизий фиксируется при выявлении в данном порту более 60 коллизий подряд. Концентратор считает количество коллизий в каждом порту и сбрасывает счетчик, если получает пакет без коллизии. Порт, в котором возникают множественные коллизии, отключается. Если в течение заданного времени (5 мкс для Fast Ethernet, 50 мкс для Ethernet) в этом порту не будет зафиксировано коллизий, то он снова включается.

Ситуация затянувшейся передачи фиксируется в случае, когда время передачи превышает более чем в три раза максимально возможную длительность пакета, то есть 400 мкс для Fast Ethernet или 4000 мкс для Ethernet.При обнаружении такой затянувшейся передачи соответствующий порт отключается. После окончания затянувшейся передачи данный порт снова включается.

Кроме перечисленных функций концентратор также активно способствует обнаружению любых коллизий в сети. При одновременном поступлении на его порты двух и более пакетов он, как и любой абонент, усиливает столкновение путем передачи во все порты сигнала "Пробка" в течение 32 битовых интервалов. В результате все передающие абоненты всех сегментов обязательно обнаруживают факт коллизии и прекращают свою передачу.

Таким образом, даже самый простой концентратор представляет собой довольно сложное устройство, позволяющее автоматически устранять некоторые неисправности и временные сбои. Таким образом, концентратор не только объединяет точки включения кабелей сети, но и активно улучшает условия обмена, повышает производительность сети, отключая время от времени неисправные или неустойчиво работающие сегменты. Впрочем, главный признак концентратора остается – он не производит никакой обработки информации, воспринимает пакеты как единое целое, не анализируя их содержимое.

Как и сетевые адаптеры, концентраторы могут быть односкоростными и двухскоростными. Для большей свободы в проектировании сети лучше выбирать именно двухскоростные (10/100 Мбит/с) концентраторы.

Чаще всего репитеры и концентраторы выполняются в виде отдельных автономных блоков, имеющих внутренний или внешний источник питания.

Некоторые концентраторы рассчитаны на подключение жестко заданного количества сегментов определенного типа (например, на четыре сегмента 10BASE2 или же на восемь сегментов 10BASE-T). Для этого на них устанавливаются соответствующие типу сегмента разъемы: BNC, RJ-45, AUI или оптоволоконные разъемы.

Другие, более дорогие концентраторы, называемые наращиваемыми, стековыми (Stackable), имеют модульную структуру и позволяют гибко приспосабливать их к заданной конфигурации сети. В этом случае в каркас (стек) концентратора может быть установлено различное число (обычно до 8) сменных модулей, каждый из которых ориентирован на один или несколько сегментов какого-нибудь типа и имеет соответствующие разъемы для подключения кабеля сети (например, BNC, AUI, RJ-45, ST-разъемы). Как правило, количество подключаемых сегментов (портов концентратора) выбирается кратным четырем: 4, 8, 12, 16, 24. Наращиваемый концентратор может поддерживать, к примеру, 192 порта (восемь модулей, каждый из которых рассчитан на 24 сегмента). Структура такого наращиваемого концентратора показана на рис. 13.3.


Рис. 13.3. Структура наращиваемого концентратора

Самые сложные концентраторы на базе единого шасси (рис. 13.4) позволяют путем перекоммутации связей на контактной задней панели строить сложные конфигурации сетей. Например, они могут одновременно поддерживать несколько типов сетей (Token-Ring, Ethernet и FDDI), допускают включение не только модулей репитерных концентраторов, но и модулей маршрутизаторов и коммутаторов. На основе такого концентратора можно также организовывать одновременно несколько независимых однотипных сетей (например, Ethernet) для разделения информационных потоков между ними, снижения нагрузки на сеть.


Рис. 13.4. Концентратор на основе шасси

Как правило, концентраторы на базе шасси предусматривают возможность довольно сложного управления обменом. Количество портов таких концентраторов может доходить до 288. Правда, этот тип концентратора оказывается обычно самым дорогим в расчете на один порт. Считается, что их применение становится экономически оправданным только в случае необходимости поддержки большого количества портов (около 100).

Встречаются также совсем простые и самые дешевые репитеры и концентраторы, выполненные в виде платы, вставляемой в разъем системной шины компьютера (из компьютера они берут при этом только питание). Недостаток такого решения состоит в том, что для работы сети необходимо, чтобы компьютер, в который включена плата репитера (концентратора), был постоянно включен (в идеале – круглосуточно). При выключении питания этого компьютера связь по сети становится невозможной.

Концентраторы класса I и класса II

Стандарт IEEE 802.3 определяет два класса репитерных концентраторов Ethernet/Fast Ethernet, отличающихся друг от друга своими функциональными возможностями и областями применения. Каждый концентратор должен иметь маркировку своего класса в виде римской цифры I или II, заключенной в кружок.

Концентраторы класса II —классические концентраторы, использовавшиеся с самого начала в сетях Ethernet. Именно поэтому их применение было разрешено и в сетях Fast Ethernet. Эти концентраторы отличаются тем, что они непосредственно повторяют приходящие на них из сегмента сигналы и передают их в другие сегменты без какого бы то ни было преобразования. Они не способны преобразовывать методы кодирования сетевых сигналов. Поэтому к ним можно подключать только сегменты, использующие одну систему сигналов. Например, к концентратору могут подключаться только одинаковые сегменты 10BASE-T или только одинаковые сегменты 100BASE-TX. Допустимо, правда, подключение и разных сегментов, но они должны использовать один код передачи, например, 10BASE-T и 10BASE-FL или 100BASE-TX и 100BASE-FX. Данные концентраторы принципиально не могут объединять сегменты с разными системами кодирования, в частности, 100BASE-TX и 100BASE-T4.

Задержка сигналов в концентраторах класса II меньше, чем в концентраторах класса I. Согласно стандарту, она должна составлять от 46 битовых интервалов (для 100BASE-TX/FX) до 67 битовых интервалов (для 100BASE-T4). Отсюда следуют ограничения на наращиваемость таких концентраторов и на количество их портов (как правило, оно не превышает 24). Зато меньшая задержка концентратора позволяет использовать кабели большей длины, так как на работоспособность сети влияет суммарная задержка сигнала в сети, включающая в себя задержки, как концентраторов, так и в кабелях.

Для соединения концентраторов класса II между собой используется специальный порт расширения (UpLink port). Каждый концентратор подключается этим портом к одному из обычных портов другого концентратора (рис. 13.5).


Рис. 13.5. Соединение двух концентраторов класса II

Концентраторы класса II сложнее в производстве, чем концентраторы класса I, так как временные требования, предъявляемые к ним, жестче. Но при этом возможности их меньше, поэтому в настоящее время их вытесняют концентраторы класса I.

Концентраторы класса I характеризуются тем, что они преобразуют приходящие по сегментам сигналы в цифровую форму, прежде чем передавать их во все другие сегменты. Они содержат декодирующие и кодирующие узлы.

В отличие от концентраторов класса II они способны преобразовывать коды, применяемые в разных сегментах. Поэтому к ним можно одновременно подсоединять сегменты разных типов, например, 100BASE-TX, 100BASE-T4 и 100BASE-FX. Но этот процесс двойного преобразования кодов требует времени, поэтому данные концентраторы оказываются медленнее (по стандарту, их задержка составляет не более 140 битовых интервалов).

Концентраторы класса I более гибкие, они имеют расширенные возможности по наращиваемости. Именно из них строятся сложные концентраторы на базе шасси. К тому же благодаря внутренним цифровым шинам сигналов они допускают управление с удаленных рабочих станций, позволяющих контролировать нагрузку сети, состояние портов, интенсивность ошибок в сети, а также автоматически отключать неисправные сегменты.

При этом для обмена с управляющей станцией применяется специально разработанный протокол обмена SNMP (Simple Network Management Protocol – простой протокол управления сетью). Такой концентратор, допускающий удаленное управление, называется интеллектуальным (Intelligent Hub).

Протокол SNMP был предложен в 1988 году комиссией IAB (Internet Activities Board). Он описывается документами RFC 1067, RFC 1098, RFC 1157. Комиссия IAB определила также и метод описания данных для этого протокола под названием ASN.1 (Abstract Syntax Notation). Протокол SNMP относится к прикладному уровню, он работает с протоколами IP и IPX, а также позволяет не только собирать информацию о сети, но и управлять устройствами сети.

Протокол SNMP подразумевает хранение информации об устройствах сети в формате ASN.1 в виде текстовых файлов, так называемых MIB (Management Information Base – база управляющей информации). Например, в случае интеллектуального концентратора с него можно считать информацию о количестве пакетов, переданных и полученных каждым из портов, можно также включить и выключить каждый порт.

Для управления устройством сети, контроллер этого устройства должен выполнять программу агента SNMP. Программа агента собирает данные о системе, в которой он запущен и управляет объектами данных системы.

Рабочая станция, управляющая сетью (NMS – Network Management Station) – это один из компьютеров, подключенных к сети, на котором запущен специальный пакет прикладных программ, в удобном графическом виде отображающий состояние сетевых устройств и позволяющий управлять ими.

Протокол SNMP поддерживает три типа команд:

  • Команда GET читает значения объектов данных устройства (из MIB) в произвольном порядке.
  • Команда GET NEXT читает следующее по порядку значение объекта данных устройства.
  • Команда SET применяется для изменений (записи) значений объектов данных устройства.

Команды и реакции протокола SNMP передаются посредством модулей данных в составе дейтаграмм (PDU – Protocol Data Unit). Протокол предусматривает также передачу информации о типе кодирования MIB, поэтому в разных устройствах MIB может иметь различный формат. Существует ряд фирменных и стандартных форматов MIB для сетевых адаптеров (MIB-II), концентраторов, мостов и сети в целом (RMON MIB), поддерживаемых SNMP.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1827; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.