КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Структура энергетического баланса зданий и помещений
Энергоэффективные здания. ГЕЛИОЭНЕРГОАКТИВНЫЕ ЗДАНИЯ Энергоэффективное здание включает в себя совокупность архитектурных и инженерных решений, наилучшим образом отвечающих целям минимизации расходования энергии на обеспечение микроклимата в помещениях здания. Энергоэкономичное здание включает в себя отдельные решения или систему решений, направленных на снижение расхода энергии на обеспечение микроклимата в помещениях здания. При проектировании энергоэффективного здания архитектор решает задачу использовать наилучшим образом положительное энергетическое влияние (воздействие) наружного климата и максимально нейтрализовать отрицательное влияние наружного климата на тепловой баланс здания. В это же время инженер решает задачу организовать такую систему климатизации здания, которая с наименьшими затратами энергии обеспечивает требуемые параметры микроклимата в помещениях. Снижение энергопотребления возможно только при условии строгого контроля и регулирования поступления и расхода энергии в зданиях, которые определяются необходимостью создания и поддержания требуемых микроклиматических параметров в различных помещениях в зависимости от условий внешней среды. Поэтому, центральное место в процессе проектирования энергоэффективных зданий (в том числе в условиях реконструкции) занимает оценка и регулирование энергетического баланса, т.е. структуры и величины энергопоступлений от различных источников и фактических энергозатрат, как в целом по зданию, так и в отдельных его помещениях. В общем виде структура энергетического баланса любого здания (помещения) выглядит следующим образом (Табл. 1) Таблица 1.
Понятно, что доли (удельные значения) того или иного вида энергозатрат меняются в зависимости от типа здания, природно-климатических условий, эффективности систем инженерного обеспечения и эксплуатационных качеств конструкций. Однако, данные исследователей большинства государств, озабоченных проблемами энергосбережения в строительстве, показывают, что наибольшие энергозатраты приходятся, как правило, на: · отопление и покрытие энергопотерь при отоплении (европейские страны и Россия: основные статьи энергозатрат жилых зданий, составляющие до 60% от общего объема энергопотребления); · охлаждение, т.е. кондиционирование воздуха (США, Япония: на системы кондиционирования воздуха во многих случаях приходится до 50% от общих энергозатрат на инженерное обеспечение зданий), · искусственное освещение, затраты на которое в балансе энергопотребления крупных административных зданий и больниц могут составлять до 50% от общей суммы.
Следовательно, основные пути повышения энергоэффективности строительных сооружений включают: 1. всемерное снижение энергопотерь через ограждающие конструкции (в основном, за счет повышения компактности объемов, а также герметичности и теплоизоляционных свойств ограждений); 2. снижение энергопотерь при транспортировке энергии (в России, к примеру, потери электроэнергии при ее транспортировке по воздушным ЛЭП составляют до 20%; в теплосетях потери энергии составляют 1-2% на каждые 100 п.м. трассы); 3. утилизация энергетически ценных "отходов" систем инженерного обеспечения - вентвыбросов, канализационных стоков и т.п. (к примеру, в жилых зданиях, по данным датских специалистов, только с вентвыбросами теряется до 40% всего тепла); 4. оптимизация энергозатрат в системах инженерного обеспечения на основе оперативного учета изменения параметров внешней среды, устранение эффектов "излишнего обеспечения" (отопления, освещения и т.п.); 5. снижение энергопотребления системами инженерного обеспечения, оборудованием и техникой в целом, совершенствование их технико-экономических показателей; 6. целенаправленное использование энергетических ресурсов внешней среды - солнца, ветра, грунта, воды, воздуха и др.; 7. смена стереотипов поведения людей при потреблении энергоресурсов (в частности, при использовании бытовой техники) в целях их экономного расходования. Экономический эффект от различных энергосберегающих мероприятий, проводимых в соответствии данным принципам в условиях России, отечественные специалисты оценивают, в целом, следующим образом: Таблица 2
Дата добавления: 2015-04-25; Просмотров: 2125; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |