КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Каскад с последовательной отрицательной обратной связью по току нагрузки
Типовая схема транзисторного каскада с общим эмиттером, охваченного последовательной отрицательной обратной связью (ООС) по току нагрузки, приведена на рис. 2.3.5.
Рис. 2.3.5. Транзисторный каскад с цепью последовательной ООС по току нагрузки. Эта связь образуется за счет введения в эмиттерную цепь транзистора VТ резистора . Ток эмиттера, протекая по резистору , создает на нем напряжения . Эго напряжение алгебраически складывается с входным напряжением ивх, присутствующем на резисторе делителя . Сумма напряжений прикладывается к эмиттерному переходу транзистора и, по сути, является входным напряжением каскада. Входное напряжение и напряжение обратной связи направлены встречно, поэтому обратная связь отрицательна. Введение резистора снижает общий коэффициент усиления каскада, повышает его входное и выходное сопротивления, расширяет полосу усиливаемых частот и снижает линейные и нелинейные искажения. Следует отметить, что в реальных усилительных каскадах повышение входного сопротивления несколько компенсирует снижение его общего коэффициента усиления за счет увеличения коэффициента передачи входного делителя. Коэффициент усиления каскада (рис. 2.3.5), охваченного цепью ООС, равен:
. (2.3.12)
Для рассматриваемой схемы может быть определен следующим образом: . (2.3.13) Обычно из-за большого значения можно с достаточной точностью полагать, что . Тогда выражение для коэффициента передачи цепи ООС примет вид
. (2.3.14)
Подставляя в выражение для коэффициента передачи усилителя с ООС, непосредственно для транзисторного каскада получим: . (2.3.15)
Входное сопротивление каскада:
(2.3.16)
Из (2.3.16) следует, что выражение (2.3.15) аналогично исходному выражению коэффициента усиления каскада. Тогда можно записать выражения для коэффициента усиления всего каскада
, (2.3.17)
где - эквивалентное сопротивление делителя на резисторах , приведенного к схеме на рис. 2.3.1. Выходное сопротивление каскада равно:
(2.3.18)
Ранее было показано, что основными причинами нестабильности тока коллектора является изменение температуры окружающей среды, вызывающей изменения напряжения эмиттерного перехода , начального тока коллектора и коэффициента передачи тока . Для современных кремниевых транзисторов можно полагать, что из-за малости абсолютного значения влиянием этого параметра можно пренебречь. Поэтому ограничимся рассмотрением влияния на ток только температурных изменений и . Как уже известно, ток покоя транзистора связан с током базы соотношением . Переходя в приведенном выражении к приращениям, получим:
,
или, полагая ,
. (2.3.19)
Используя теорему об эквивалентном генераторе, схему на рис. 2.3.5 всегда можно привести к схеме на рис. 2.3.1,а. Тогда для исследуемой схемы можно записать:
, (2.3.20)
или переходя к приращениям:
. (2.3.21)
Подставив (2.3.21) в (2.3.20):
. (2.3.22)
Величину называют коэффициентом нестабильности. Допустимый диапазон изменения , при изменении сопротивления эмиттерного резистора можно определить, воспользовавшись правилом Лопиталя:
;
.
Полученные выражения показывают, что минимальный и максимальный ток покоя транзистора определяются выражениями:
, при ; (2.3.23)
, при .
Из проведенного анализа можно сделать два практических вывода: введением цепи ООС нестабильность значения не может быть уменьшена ниже величины ; зная исходную и требуемую нестабильности тока покоя транзистора и используя выражение (2.3.22), всегда можно найти требуемую глубину ООС (величину ), необходимую для обеспечения заданных параметров усилительного каскада. В реальных схемах обычно лежит в диапазоне 2...5. Тогда, полагая в (2.3.22) и - можно получить простое расчетное соотношение:
. (2.3.24)
Зная требуемые и от расчетной схемы на рис. 2.3.1, можно легко вернуться к исходной схеме.
Дата добавления: 2015-03-29; Просмотров: 600; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |