Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Компьютерные сети 2 страница




Основным недостатком технологии Fiber Channel является ее стоимость: оптический кабель со всеми сопутствующими его использованию разъемами и способами монтажа является существенно более дорогим, чем медные кабели.

Для организации высокоскоростных локальных сетей используется FDDI (Fiber Distributed Data Interface).

Технология FDDI предназначена не для непосредственного соединения компьютеров, а для построения высокоскоростных магистральных каналов связи (backbone), объединяющих несколько сегментов локальной сети. Простейшим примером такой магистрали являются два сервера, соединенные высокоскоростным каналом связи, созданным на базе двух сетевых карт и кабеля. Так же, как и технология 100Base-T, FDDI обеспечивает скорость передачи данных 100 Мбит/с.

Сеть FDDI использует топологию двойного физического кольца. Передающиеся сигналы движутся по кольцам в противоположных направлениях. Одно из колец называется первичным, а другое - вторичным. При корректном функционировании сети первичное кольцо используется для передачи данных, а вторичное выступает в роли запасного.

В сети FDDI каждое сетевое устройство (узел сети) играет роль повторителя. FDDI поддерживает четыре вида узлов: станция с двойным подключением (DAS - dual-attached stations), станция с одинарным подключением (SAS - single-attached stations), концентратор с двойным подключением (DAC - dual-attached concentrator) и концентратор с одинарным подключением (SAC-single-attached concentrator). DAS и DAC всегда подключаются к обоим кольцам, a SAS и SAC - только к первичному кольцу.

Если в какой-либо точке сети возникает разрыв кабеля или Другая поломка, делающая невозможной передачу данных между соседними узлами сети, то устройства DAS и DAC восстанавливают работоспособность сети, перенаправляя сигнал в обход неработоспособного сегмента с использованием вторичного кольца.

FDDI использует маркер доступа в качестве протокола контроля доступа к среде передачи и оптический кабель в качестве среды передачи.

Технология FDDI имеет следующие преимущества.

Топология двойного физического кольца обеспечивает надежность передачи данных путем сохранения работоспособности сети в случае обрыва кабеля. В стандарт FDDI заложены функции управления сетью. В дополнение к перечисленным преимуществам существует спецификация (CDDI - Copper Distributed Data Interface) на построение сети по технологии FDDI с использованием медной витой пары. Эта спецификация позволяет снизить стоимость развертывания сети за счет использования менее дорогого медного кабеля вместо оптического.

Основным недостатком FDDI является цена построения сети. Сетевые карты и оптический кабель для FDDI обладают существенно большей стоимостью, чем для других технологий, обеспечивающих такую же скорость передачи данных. Специфика монтажа оптического кабеля требует дополнительной подготовки специалистов, выполняющих работу с кабелем. Несмотря на то, что сетевые карты CDDI дешевле FDDI, тем не менее они являются более дорогими, чем сетевые карты 100Base-T.

Технология обмена цифровыми данными с использованием телефонных линий Integrated Services Digital Network (ISDN) предоставляет возможность обмена данными в виде передачи цифровых сигналов по цифровым телефонным линиям. Эти данные могут представлять собой комбинацию видео, звуковых и других данных. ISDN имеет несколько технологических решений, обеспечивающих заказчика необходимой производительностью канала связи. Для частных лиц и небольших офисов в основном предоставляются линии с базовой скоростью (Basic Rate Interface - BRI). Для крупных компаний предоставляются линии Primary Rate Interface - PRI. BRI использует два «несущих» (bearer - В) канала связи с пропускной способностью 64 Кбит/с каждый для приема и передачи данных и один управляющий канал (delta - D) для установки и поддержания соединения. PRI - это совокупность нескольких цифровых линий, используемых параллельно для приема и передачи данных. Такие совокупности линий получили условные обозначения Т1 и Е1. В США стандартом является применение линий Tl. T1 состоит из 23 В-каналов и одного D-канала с суммарной пропускной способностью 1,544 Мбит/с.

В Европе используются линии E1. E1 состоит из 30 В-каналов и одного D-канала с суммарной пропускной способностью 2,048 Мбит/с.

ISDN требует применения специального оборудования, включающего в себя цифровые телефонные линии, и преобразователей (network termination unit - NT-1). NT-1 преобразует входной сигнал в цифровой, равномерно распределяет его по каналам для передачи и выполняет диагностический анализ состояния всей линии передачи данных. NT-1 является и точкой подключения к цифровой сети различного оборудования: телефонов, компьютеров и т.п. Также NT-1 может выполнять функции преобразователя для подключения оборудования, самостоятельно не поддерживающего ISDN.

Преимущества ISDN заключаются в следующем.

1. Увеличена скорость обмена данными с дополнительными возможностями интеграции данных, голоса и видео в единый поток.

2. С использованием ISDN вы имеете возможность передавать данные и голосовой трафик одновременно по одной телефонной линии.

К недостатку ISDN относится медленное распространение в связи с необходимостью преобразования существующей инфраструктуры телефонных сетей, что неминуемо влечет существенные затраты.

 

Сетевые устройства и средства коммуникаций

Среда передачи данных. Когда данные готовятся к пересылке по сети, они преобразуются в электрический сигнал. Эти сигналы генерируются в виде электромагнитных волн (аналоговый сигнал) или в виде пульсаций напряжения (цифровой сигнал). Для пересылки с одного компьютера на другой сигнал должен быть физически передан из одного места в другое. Физический путь, по которому передается сигнал, и определяется существующей средой передачи. Сигнал поступает в среду передачи с компьютера-передатчика, передается по среде передачи и затем принимается компьютером-приемником. В настоящее время существуют два типа среды передачи: кабельная и беспроводная.

Кабельные среды передачи данных

Кабельные среды передачи данных обеспечивают передачу сигнала по строго определенному пути. Наиболее широко используемые в настоящее время кабельные среды передачи данных представлены кабелями следующих типов: витая пара, коаксиальный кабель и оптический кабель.

Витая пара. Этот кабель состоит из двух или более медных проводников, защищенных пластиковой изоляцией и свитых между собой (рис. 7). Свитые проводники снаружи защищаются еще одним слоем изоляции. Свивание проводников уменьшает искажение полезного сигнала, связанное с передачей электрического тока по проводнику. С точки зрения физики процесс такого искажения называется интерференцией сигналов.

В настоящее время существует несколько вариаций кабелей типа «витая пара»: экранированная витая пара и неэкранированная витая пара. При производстве экранированной витой пары свитые между собой проводники снаружи окружаются дополнительной металлической оболочкой - экраном. Эта дополнительная оболочка обеспечивает защиту полезного сигнала, передающегося по витой паре от внешних электромагнитных помех. Неэкранированная витая пара не имеет дополнительного внешнего металлического экрана. Для соединения кабелей на основе неэкранированной витой пары используются разъемы RJ-45. Внешне они очень похожи на разъемы, используемые для подключения телефонного кабеля.

Рис. 7. Разъем для соединения кабелей: а - витая пара; б - коаксиальный кабель:

1 - центральный провод; 2 - изолятор; 3 - экран;4 - внешний изолятор и защитная оболочка

Коаксиальный кабель. Этот кабель представляет собой медный проводник, по которому передается полезный сигнал. Проводник окружен изоляцией, поверх которой укладывается медная фольга или сетка, представляющая собой экран, защищающий центральный сигнальный провод от внешних электромагнитных помех. Благодаря использованию такой конструкции экран обеспечивает высокую степень защиты полезного сигнала от внешних помех, что позволяет без существенных потерь осуществлять передачу сигнала на достаточно большие расстояния. Существующие коаксиальные кабели подразделяют на два типа: тонкий и толстый.

Тонкий коаксиальный кабель внешне очень похож на современные кабели, используемые для подключения телевизионных антенн. Такой кабель не настолько гибок и удобен при монтаже, как неэкранированная витая пара, но тоже достаточно часто используется для построения локальных сетей. Разъемы, используемые для подключения тонкого коаксиального кабеля, называются ВМС-разъемами.

Толстый коаксиальный кабель очень похож на тонкий, но только он большего диаметра. Увеличение диаметра кабеля позволяет обеспечить его большую помехоустойчивость и соответственно гарантирует возможность передачи полезного сигнала на большие расстояния, чем тонкий коаксиальный кабель. Из-за более сложного процесса монтажа толстого кабеля (плохо гнется и требует специализированных разъемов) он распространен гораздо меньше.

Оптический кабель. Он используется для передачи сигнала в виде световых импульсов. Оптический кабель обеспечивает очень низкие потери полезного сигнала и за счет этого позволяет передавать данные на очень большие расстояния (в настоящее время до нескольких десятков километров). В дополнение к этому благодаря использованию света в качестве сигнала обеспечивается полная защищенность от внешних электромагнитных помех. На рис. 8 представлена конструкция оптического кабеля ОК-М.

В качестве проводника в таких кабелях используется стеклянное или пластиковое волокно, защищенное снаружи изоляцией для обеспечения физической сохранности. Оптическое волокно является относительно дорогой средой передачи (по сравнению с витой парой и коаксиальным кабелем), но в настоящее время активно используется для построения высокоскоростных и протяженных линий связи.

Рис. 8. Конструкция оптического кабеля:

1 - оптическое волокно; 2,4- заполнитель; 3 - центральный силовой элемент (стальной трос); 5 - защитная оболочка

 

Беспроводные среды передачи данных

В беспроводных средах передачи сигналы могут передаваться с использованием различного рода излучений, например, радиоволны, микроволновое излучение, инфракрасное излучение и т.п. В сети полезный сигнал всегда передается в виде волн с использованием той или иной среды передачи. Например, при использовании кабельных сред передачи сигнал передается в форме электромагнитных волн определенной частоты. В случае использования оптического кабеля сигнал передается в виде световых волн (это те же электромагнитные волны, но только гораздо большей частоты). При передаче сигналов с использованием атмосферы используются электромагнитные волны, передающиеся на частоте радиоволн, СВЧ - или инфракрасного излучения.

 

Устройства приема/передачи данных

Устройства приема/передачи данных подключаются к среде передачи, формируют сигнал в среде при его передаче отправляющим компьютером и принимают его из среды передачи на принимающей стороне. Все устройства приема/передачи характеризуются по типу используемой среды передачи и отличаются скоростью передачи данных и выполняемыми ими дополнительными функциями. Примерами таких устройств могут служить: сетевые карты, повторители, концентраторы, коммутаторы, радиоприемники/передатчики, приемники/передатчики инфракрасного излучения и т.п.

Сетевые карты (Network Adapters). Сетевая карта - это устройство, устанавливаемое в компьютер и предоставляющее ему возможность взаимодействия с сетью. В настоящее время выпускается большое количество разнообразных сетевых карт. Наиболее часто встречающиеся карты имеют вид печатной платы, устанавливаемой в разъем расширения материнской платы компьютера. Многие производители сейчас встраивают сетевые карты прямо в материнские платы.

В настоящее время производителями выпускается огромное количество сетевых карт различных типов, позволяющих использовать любые из существующих сред передачи: витая пара, коаксиальный или оптический кабель, радиоволны или инфракрасное излучение.

Для соединения сетевой карты и среды передачи данных применяются разъемы, зависящие от используемой среды передачи данных. Например, для тонкого коаксиального кабеля используются разъемы BNC, для витой пары пятой категории - разъемы RJ-45.

Повторители (Repeaters). Повторители используются для увеличения расстояния, на которое может передаваться сигнал в используемой среде передачи данных. Реальность физических процессов такова, что передающийся в той или иной среде полезный сигнал при прохождении от передатчика к приемнику, постепенно затухает. Это затухание сигнала происходит из-за возникающих в процессе передачи помех (сопротивление среды передачи, интерференция сигналов от разных источников и т.п.). Для того чтобы гарантировать успешное прохождение сигнала при больших расстояниях между передатчиком и приемником, необходимо использование повторителей. Повторитель подключается к среде передачи между передатчиком и приемником, играя роль посредника при передаче сигнала. Полезный сигнал, отправленный передатчиком, движется по среде передачи, постепенно затухая. Достигнув повторителя, сигнал усиливается повторителем до прежнего уровня и отправляется дальше по среде передачи. Таким образом, с применением повторителей можно обеспечить прохождение сигнала на расстояния в несколько раз большие, чем при использовании только передатчика и приемника, подключенных к среде передачи.

В настоящее время в сетях достаточно редко используются повторители, сделанные в виде отдельных устройств. Как правило, функции усиления сигнала реализуются во всех более сложных устройствах сети. Например, фактически все сетевые карты, концентраторы, коммутаторы реализуют в себе возможности повторителей.

Концентраторы и коммутаторы (Concentrators and Switches). Концентраторы (Hub) и коммутаторы (Switch) предоставляют возможность физического соединения в единую среду передачи всех кабелей, используемых для подключения сетевых карт компьютеров. Отличие между этими двумя устройствами заключается в том, что во время передачи пакета данных концентраторы отправляют их сразу на все компьютеры, что значительно уменьшает пропускную способность канала. Коммутатор (свич) имеет встроенную память, в которой хранится информация о том, к какому порту подключен какой компьютер. Поэтому во время передачи пакета он отправляется на определенный порт. Кроме того, Switch позволяет использовать в сети контроллеры с разной скоростью передачи, при этом общая пропускная способность не будет опускаться до уровня контроллера с минимальной скоростью.

Модемы (Modems). Модемы используются для преобразования цифровых сигналов (используемых компьютером) в аналоговые (как правило, звуковых частот) и обратно - из аналоговых в цифровые. Термин «модем» происходит от объединения двух терминов, описывающих процессы преобразования сигнала из цифрового вида в аналоговый - «модуляция» и обратно - «демодуляция». Преобразование в аналоговый сигнал позволяет передавать его по аналоговым линиям передачи данных, например телефонным линиям.

Микроволновые приемопередатчики (Microwave Transmitters). Микроволновые приемопередатчики чаще называют приемопередатчиками спутниковой связи. Такие средства связи предназначены для передачи данных на большие расстояния между компьютерами, находящимися в различных географических регионах или странах. Передатчик передает направленный поток микроволн в атмосферу, а приемник принимает его и передает следующему в цепочке приемопередатчику или преобразует полученный сигнал в другой вид для передачи по другой среде передачи данных. Такие преобразования происходят до тех пор, пока сигнал не достигнет точки назначения.

В настоящее время спутниковая связь из-за дороговизны используется чаще всего для передачи данных на большие расстояния.

Приемопередатчики инфракрасного и лазерного излучения (Infrared and Laser Transmitters). Приемопередатчики инфракрасного и лазерного излучения по принципам работы похожи на микроволновые системы: они используют атмосферу в качестве среды передачи данных. Но поскольку данные передаются в виде световых сигналов, а не радиоволн, то для успешной передачи данных необходимо обеспечивать отсутствие каких-либо помех на пути движения сигнала (передатчик и приемник должны находиться в зоне прямой видимости друг друга). Поэтому приемопередатчики инфракрасного и лазерного излучения используются для передачи сигналов на короткие дистанции и там, где ограничена возможность использования кабелей (например, при необходимости объединения нескольких филиалов, удаленных на расстояние нескольких сотен метров или единиц километров друг от друга). Поскольку инфракрасное и лазерное излучения лежат в области видимого спектра излучения, то существенные помехи на пути движения сигнала могут оказывать неблагоприятные погодные условия: дождь, туман, снег, смог и т.п. Одним из наиболее популярных сегодня видов использования приемопередатчиков инфракрасного излучения является подключение рабочих мест пользователей в офисах и обеспечение взаимодействия между периферийными устройствами и компьютером.

 

Программное обеспечение связи

В процессе обмена информацией между компьютерами ключевую роль играет программное обеспечение связи. Программа, выполняющая предоставление соответствующего набора сетевых услуг, рассматривается в качестве сервера, а программы, пользующиеся этими услугами, принято называть клиентами. Программы имеют распределенный характер, т.е. одна часть функций прикладной программы реализуется в программе-клиенте, другая - в программе-сервере, а для их взаимодействия определяется некоторый протокол. Для управления взаимодействием между приложениями пользователя и ресурсами компьютера каждая рабочая станция в сети должна иметь операционную систему.

Существует множество различных операционных систем (ОС) пользователя, при использовании которых приложения могут осуществлять доступ к файлам на локальных дисках, изображать информацию на экране монитора, выполнять печать документов на локальных принтерах и т.п. Эти операционные системы контролируют доступ приложений к ресурсам компьютера, таким, как память, средства хранения данных, жесткие и гибкие диски, и любым периферийным устройствам (принтерам, факсам, модемам и т.д.). ОС пользователя также предоставляет базовые сетевые средства, предоставляя возможность пользователям локальной сети обмениваться информацией между компьютерами.

Основное направление развития современных сетевых операционных систем (англ. Network Operation System - NOS) - перенос вычислительных операций на рабочие станции, создание систем с распределенной обработкой данных. Это в первую очередь связано с ростом вычислительных возможностей персональных компьютеров и все более активным внедрением мощных многозадачных операционных систем: OS/2, Windows NT и Windows 98/XP. Кроме этого внедрение объектно-ориентированных технологий (OLE, ActiveX, ODBC и т.д.) позволяет упростить организацию распределенной обработки данных. В такой ситуации основной задачей NOS становится объединение неравноценных операционных систем рабочих станций и обеспечение транспортного уровня для широкого круга задач: обработка баз данных, передача сообщений, управление распределенными ресурсами сети.

В современных NOS применяют три основных подхода к организации управления ресурсами сети.

Первый подход - это таблицы объектов (англ. Bindery). Используются в сетевых операционных системах Novell NetWare. Такая таблица находится на каждом файловом сервере сети. Она содержит информацию о пользователях, группах, их правах доступа к ресурсам сети (данным, сервисным услугам, печати через

сетевой принтер и т.п.)- Такая организация работы удобна, если в сети только один сервер. В этом случае требуется определить и контролировать только одну информационную базу. При расширении сети, добавлении новых серверов объем задач по управлению ресурсами сети резко возрастает. Администратор системы вынужден на каждом сервере сети определять и контролировать работу пользователей. Абоненты сети, в свою очередь, должны точно знать, где расположены те или иные ресурсы сети, а для получения доступа к этим ресурсам - регистрироваться на выбранном сервере. Конечно, для информационных систем, состоящих из большого количества серверов, такая организация работы не подходит.

Второй подход используется в LAN Server и Windows NT Server - структура доменов (англ. Domain). Все ресурсы сети и пользователи объединены в группы. Домен можно рассматривать как аналог таблиц объектов (англ, bindery), только здесь такая таблица является общей для нескольких серверов, при этом ресурсы серверов являются общими для всего домена. Поэтому пользователю для того чтобы получить доступ к сети, достаточно подключиться к домену (зарегистрироваться). После этого ему становятся доступны все ресурсы домена, ресурсы всех серверов и устройств, входящих в состав домена. Однако и с использованием этого подхода также возникают проблемы при построении информационной системы с большим количеством пользователей, серверов и соответственно доменов, например, сети для предприятия или большой разветвленной организации. Здесь эти проблемы уже связаны с организацией взаимодействия и управления несколькими доменами.

Третий подход - служба наименований директорий, или каталогов (англ. Directory Name Services - DNS) лишен этих недостатков. Все ресурсы сети: сетевая печать, хранение данных, пользователи, серверы и т.п. - рассматриваются как отдельные ветви или каталоги информационной системы. Таблицы, определяющие DNS, находятся на каждом сервере. Это, во-первых, повышает надежность и живучесть системы, а во-вторых, упрощает обращение пользователя к ресурсам сети. Зарегистрировавшись на одном сервере, пользователь получает доступ ко всем ресурсам сети. Управление такой системой также проще, чем при использовании доменов, так как здесь существует одна таблица, определяющая все ресурсы сети, в то время как при доменной организации необходимо определять ресурсы, пользователей, их права доступа для каждого домена отдельно.

В настоящее время наиболее распространенными сетевыми операционными системами являются Novell NetWare 4.XX, Microsoft Windows 2000 Server и IBM LAN Server. В Windows XP созданы отличные возможности использования локальной сети. Важной особенностью Windows XP является возможность использовать одно общее подключение к Интернету для других компьютеров локальной сети. При этом ваш компьютер будет защищен брандмауэром подключения к Интернету.

 

Адресация компьютеров в сети

Каждый компьютер в компьютерной сети имеет имя. Для этого служит так называемая IP (Internet Рго1осо1)-адресация.

IP-адрес - это уникальный номер компьютера в сети. IP-адрес определяет местонахождение узла в сети подобно тому, как адрес дома указывает его расположение в городе. IP-адрес может быть «статический - неизменный» или «динамический - выдается сервером». Каждый IP-адрес состоит из двух частей - идентификатора сети и идентификатора узла. Первый определяет физическую сеть. Он одинаков для всех узлов в одной сети и уникален для каждой из сетей, включенных в объединенную сеть. Идентификатор узла соответствует конкретной рабочей станции, серверу, маршрутизатору или другому TCP/IP-узлу в данной сети. Он должен иметь уникальное значение в данной сети. Каждый узел TCP/IP однозначно определяется по своему логическому IP-адресу. Такой уникальный адрес необходим всем сетевым компонентам, взаимодействующим по TCP/IP.

IP-адрес может быть записан в двух форматах - двоичном и десятичном с точками. Каждый IP-адрес имеет длину 32 бита и состоит из четырех 8-битных полей, называемых октетами, которые отделяются друг от друга точками. Каждый октет представляет десятичное число в диапазоне от 0 до 255. Эти 32 разряда IP-адреса содержат идентификатор сети и узла, например 192.168.0.2 - адрес компьютера в учебном классе, 194.226.80.160 - адрес сервера органов государственной власти Российской Федерации (www.gov.ru), 213.180.194.129 - поисковый сервер (www.yandex.ru).

Сообщество Интернета определило пять классов IP-адресов в соответствии с различными размерами компьютерных сетей. Microsoft TCP/IP поддерживает адреса классов А, В и С. Класс адреса определяет, какие биты относятся к идентификатору сети, а какие - к идентификатору узла. Также он определяет максимально возможное количество узлов в сети.

Класс IP-адреса идентифицируют по значению его первого октета, 32-разрядные IP-адреса могут быть присвоены в общей совокупности 3720314628 узлам. Ниже показано, как определяются поля в IP-адресах разных классов.

Класс IP-адрес Идентификатор сети Идентификатор узла
А W.X.Y.Z W X.Y.Z
В W.X.Y.Z W.X Y.Z
С W.X.Y.Z W.X.Y Z

Адреса класса А назначаются узлам очень большой сети. Старший бит в адресах этого класса всегда равен нулю. Следующие семь бит первого октета представляют идентификатор сети. Оставшиеся 24 бита (три октета) содержат идентификатор узла. Это позволяет иметь 126 сетей с числом узлов до 17 млн. в каждой.

Адреса класса В назначаются узлам в больших и средних по размеру сетях. В двух старших битах IP-адреса класса В записывается двоичное значение 10. Следующие 14 бит содержат идентификатор сети (два первых октета). Оставшиеся 16 бит (два октета) представляют идентификатор узла. Таким образом, возможно существование 16384 сетей класса В, в каждой из которых около 65000 узлов.

Адреса класса С применяются в небольших сетях. Три старших бита IP-адреса этого класса содержат двоичное значение 110. Следующие 21 бит составляет идентификатор сети (первые три октета). Оставшиеся 8 бит (последний октет) отводятся под идентификатор узла. Всего возможно около 2000000 сетей класса С, содержащих до 254 узлов.

Примечание. В качестве идентификатора сети не может использоваться значение 127. Оно зарезервировано для диагностики и используется в качестве локальной заглушки.

Адреса класса D предназначены для рассылки групповых сообщений. Группа получателей может содержать один, несколько или ни одного узла. Четыре старших бита в IP-адресе класса D всегда равны 1110. Оставшиеся биты обозначают конкретную группу получателей и не разделяются на части. Пакеты с такими адресами рассылаются избранной группе узлов в сети. Их получателями могут быть только специальным образом зарегистрированные узлы. Microsoft поддерживает адреса класса D, применяемые приложениями для групповой рассылки сообщений, включая WINS и Microsoft NetShow™.

Класс Е - экспериментальный. Он зарезервирован для использования в будущем и в настоящее время не применяется. Четыре старших бита адресов класса Е равны 1111.

Для выделения (маскирования) из IP-адреса его частей (идентификаторов сети и узла) используется 32-разрядная маска подсети. Использование маски необходимо при выяснении того, относится тот или иной IP-адрес к локальной или удаленной сети. Каждый узел TCP/IP должен иметь маску подсети либо задаваемую по умолчанию (в том случае, когда сеть не делится на подсети), либо специальную (если сеть разбита на несколько подсетей). Задаваемая по умолчанию маска подсети используется в том случае, если сеть TCP/IP не разделяется на подсети. Даже в сети, состоящей из одного сегмента, всем узлам TCP/IP необходима маска подсети. Значение маски подсети по умолчанию зависит от используемого в данной сети класса IP-адресов. В маске подсети биты, соответствующие идентификатору сети, устанавливаются в 1. Таким образом, значение каждого октета будет равно 255. Все биты, соответствующие идентификатору узла, устанавливаются в 0.

Диагностика TCP/IP

Windows XP предоставляет несколько утилит для диагностики неисправностей, характерных для протокола TCP/IP:

· Ping (Packet InterNet Groper) - проверяет корректность конфигурации протокола TCP/IP и доступность другого узла.

· Ipconfig - проверяет конфигурацию протокола TCP/IP, включая адреса серверов DHCP, DNS и WINS.

· Finger - получает системную информацию с удаленного компьютера, поддерживающего сервис Finger.

· Nslookup - позволяет просматривать записи в базе данных сервера DNS, относящиеся к тому или иному узлу или домену.

· Hostname - возвращает имя локального компьютера для аутентификации.

· Netstat - отображает статистику протокола и текущее состояние соединений TCP/IP.

· Route - просматривает или изменяет локальную таблицу маршрутизации.

· Tracert - прослеживает маршрут от локального до удаленного узла.

· Агр - отображает локальный кэш соответствий IP-адресов адресам сетевых адаптеров.

 




Поделиться с друзьями:


Дата добавления: 2015-04-25; Просмотров: 589; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.055 сек.