КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лабораторная работа №2. Решение задачи линейного программирования симплекс методом
Задание: Построить математическую модель формирования производства. Определить максимальную прибыль и оптимальный план симплекс методом. Имеется производство по изготовлению двух видов продукции А и В при имеющемся объеме материалов трех сортов, из которых производится продукция. Исходные данные приведены в таблице. Вариант 1
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6
Вариант 7
Вариант 8
Вариант 9
Вариант 10
Пример выполнения: Предположим, что для производства двух видов продукции А и В можно использовать только материал трех сортов. При этом на изготовление единицы изделия вида А расходуется а1 кг материала первого сорта, а2 кг материала второго сорта и а3 кг материала третьего сорта. На изготовление единицы вида В расходуется b1 кг материала первого сорта, b2 кг материала второго сорта, b3 кг материала третьего сорта. На складе фабрики имеется всего материала первого сорта С1 кг, второго сорта – С2 кг, третьего – С3 кг. От реализации единицы продукции вида А фабрика имеет прибыль m тысяч рублей, а от реализации вида В прибыль составляет n тысяч рублей. Исходные данные представлены в таблице:
Составим математическую модель: Пусть x1 количество продукции вида А, x2 количество продукции вида В. Тогда количество материала первого сорта требуемого на изготовление продукции 1 будет 3x1 +2х2 .По условию данной задачи это число не должно превышать 32, следовательно получим первое ограничение 3x1 +2х2 ≤ 32 (1) 4x1 + 5х2 - количество материала второго сорта, требуемое на изготовление продукции 2, которое не должно превышать 48. исходя из этого, получим второе ограничение 4x1 + 5х2 ≤ 48 (2) Для изготовления продукции 3 необходимо количество материала третьего сорта x1 + 6х2, которое по условию данной задачи не должно превышать 40, таким образом получим третье ограничение x1 + 6х2 ≤ 40 (3) Поскольку х1 и х2 выражают количество выпускаемой продукции, то они не должны быть отрицательными (требования не отрицательности переменных), следовательно x1≥0, x2≥0. (4) Задача состоит в том, чтобы найти такие значения х1 и х2, при которых прибыль будет максимальной. Таким образом, 6х1 – прибыль, полученная от реализации продукции вида А, а 11х2 – прибыль, полученная от реализации продукции вида В. Следовательно, прибыль на единицу продукции, которая должна быть максимальной будет иметь следующий вид F= 6x1 + 11х2 (целевая функция задачи) Таким образом, математическая модель для данной задачи будет иметь следующий вид системы, состоящей из полученных ограничений: 3x1 +2х2 ≤ 32 (1) 4x1 + 5х2 ≤ 48 (2) x1 + 6х2 ≤ 40 (3) x1≥0, x2≥0. (4) F= 6x1 + 11х2 →max
Дата добавления: 2015-04-25; Просмотров: 2183; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |